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What is real is not the external form, but the essence of things. Starting from this truth it
is impossible for anyone to express anything essentially real by imitating its exterior surface.

Constantin Brâncus, i



Abstract

Although biological and artificial neural networks are widely studied in the fields of neuro-
science and machine learning, there is active ongoing work trying to understand how both
systems encode, compress, and transfer information. Partial information decomposition
(PID), an extension of Shannon mutual information to the multivariate case, has shown to
be a useful tool for studying various systems. PID partitions the mutual information between
a set of source variables and a target variable into unique (information carried by one variable
but not the other), redundant (mutually-shared information), and synergistic information
(information only available from the presence of all sources). Previously, synergy has been
strongly linked to complex human cognition and has been related to theories of consciousness
based on information theory. However, these relations have had limited study in the context
of machine learning, especially in relation to complex tasks; we still do not know precisely
how and why synergy emerges in learning systems. To address this, we analyzed synergis-
tic and redundant information in a supervised learning setting to study network dynamics
in relation to task and to stochasticity of training method. We also studied reinforcement
learning agents performing tasks of increasing complexity in the Animal-AI environment.
Our work found that neural networks compress synergistic and redundant information into
unique information and lower-order forms possibly due to the inefficiency of distributed rep-
resentations. Furthermore, our results suggest that synergy is used by neural networks to
generalize learned representations to new tasks, rather than re-learning unique information
mappings. These findings provide a new interpretation of synergy: as a buffer for creating
both higher-level representations and generalizing learned encodings to new settings, which
presents a trade-off between efficient mappings within the neuronal information space.
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Chapter 1

Introduction

Understanding how the brain processes information to learn, behave intelligently, and give
rise to conscious experience is a subject of wide-study within the field of neuroscience. It
has also been of great interest in machine learning research, as a model and source of inspi-
ration for new developments. However, both fields currently have a limited understanding
of exactly how these processes occur. The brain is considered the most complex known
object in the universe, containing 80 billion neurons with up to 15,000 synapses each [1].
Even with the refinement of various techniques and experiments [2], much knowledge is still
left to discover. Paralleling the difficulties of studying the brain, artificial neural networks
are also currently poorly understood. Much of deep learning is grounded upon empirical
evidence of performance in particular tasks, rather than a strong theoretical basis. We still
do not fully know why neural networks perform as well as they do, what exactly occurs
during the learning process, or how to interpret the computations and decisions made by our
models [3, 4]. A point of commonality in both biological and artificial neural networks, is
that information is transmitted from sources (groups of neurons) to targets (other groups of
neurons). This information is processed through some form of computation and gives rise to
representations which are used for some function. Although artificial neural networks are not
a perfect model of the brain, understanding the same flow of information can contextualize
the behavior of groups of neurons, allowing us to interpret different scales of neural behavior.

Partial information decomposition (PID) [5], an elegant framework from the field of in-
formation theory which divides Shannon mutual information beyond two variables into re-
dundant (mutually-shared information), unique (information carried by one variable but not
the other), and synergistic (information only available from the presence of all variables)
information, has been used to study various systems. PID allows for the quantification and
description of the interactions occurring within a group of sources as they are collectively
transmitted to a given target. This idea can be leveraged to analyze the way information
is encoded, compressed, and transferred within a system. One of PID’s measures, synergy,
quantifies information that only exists as a result of an entire set of sources being consid-
ered collectively, being more than the sum of its parts. Previous work has used synergy
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CHAPTER 1. INTRODUCTION 2

to observe the way collective behavior gives rise to complexity, studying it in the interre-
lated contexts of artificial neural networks, emergence, and the brain; we review some of
this research in Chapter 3. In this realm, one line of work [6, 7] has shown that synergy is
strongly linked to complex human cognition and has used it to bridge two major theories of
consciousness, namely Global Neuronal Workspace Theory [8, 9, 10] and Integrated Infor-
mation Theory [11, 12, 13]. Further studying synergy through computational methods, such
as reinforcement learning, can provide better understanding of its relation to learning and
yield new insights for both neuroscience and machine learning.

In this work, we seek to find computational basis for neuroscientific findings of synergy’s
importance to complex cognition and leverage the tools of machine learning to explore the
relationship of synergy to learning. More specifically, we ask the following questions: How
does synergy behave in reinforcement learning agents as task complexity increases? Are lev-
els of synergy correlated with particular tasks or processes? Do agents with increased levels
of synergy perform differently than those with lower levels? To do this, we analyze synergis-
tic interactions in both supervised learning and reinforcement learning settings. We use the
Animal-AI Environment [14], a reinforcement learning environment inspired by research in
animal cognition, to create new tasks and test for particular abilities.

Our work discovered a number of different findings for which we provide detailed analysis.
Both sets of experiments revealed that the information decomposition of neural networks is
strongly influenced by the task being performed, such that some tasks are highly-synergistic
and others are not. We also found that neural networks compress distributed represen-
tations (i.e., synergy and redundancy) into unique and lower-order synergistic/redundant
information, and that lower-order information decomposition is correlated with full-order in-
formation decomposition in small networks. We showed that dropout can be seen as a form
of regularization which increases redundancy of important information and reduces synergy
of unimportant information, but preserves essential synergistic information. Finally, our
results suggest that synergy is used by networks to transfer learned representations to new
tasks by extracting additional information from existing mappings, rather than re-learning
unique representations.

This thesis is structured as follows. First, in Chapter 2, we introduce relevant preliminary
background information about the fields of reinforcement learning and information theory,
as well as describe the Animal-AI Environment in detail. Next, in Chapter 3, we review
previous literature which has used synergy and conceptually-related measures (namely, inte-
grated information) to study neural networks, emergent behavior, and theories of cognition
and consciousness; as we will describe, these subjects can all be related to one another and
are an important basis for our studies. In Chapters 4, 5, and 6, we describe our experimental
methodology and provide thorough analysis of our results. Finally, in Chapters 7 and 8, we
relate our findings to ongoing research and discuss future directions for our work.



Chapter 2

Background

The current work is built off the fields of reinforcement learning and information theory.
First, Section 2.1 summarizes relevant reinforcement learning background information. Fol-
lowing that, Section 2.2 introduces the Animal-AI Environment used for this project. Finally,
Section 2.3 provides an introduction to information theory with a particular focus on partial
information decomposition.

2.1 Reinforcement Learning

This section is meant to serve as a preliminary background for the reinforcement learning
problem and methods for approaching it. We begin with a basic summary of reinforcement
learning, predominantly based off of Sutton and Barto’s book [15]. We then continue with an
introduction to policy gradient methods and the Proximal Policy Optimization algorithm we
use in our study. Readers familiar with deep reinforcement learning can skip to Section 2.2,
as we do not introduce anything novel in this section.

2.1.1 Introduction

Reinforcement learning (RL) provides a strong framework for modeling cognition, using
intrinsic states and goals, and extrinsic rewards and environments. In contrast to other areas
of machine learning, RL is based on a learner’s (agent’s) interaction with its surroundings
(environment) as the means by which it learns, forcing it to be active in its acquisition of
information rather than dependent on information provided from an external source. This
allows for generalization to complex behavior and tasks that may not be easily-defined outside
of the need to reach some goal.

2.1.2 Preliminaries

Markov Decision Processes, later described in this section, can be formally defined as a tuple
(S,A,R, P ), where

3



CHAPTER 2. BACKGROUND 4

• S is the set of all possible states

• A is the set of all possible actions

• R is the set of all possible rewards, such that S ×A → R

• P (Rt+1, St+1|St, At) is the set of transition probabilities

In a RL paradigm, at each timestep t an agent is in a state St ∈ S and receives a reward
Rt ∈ R from its environment and produces an action At ∈ A. The observation relays some
information about the state of the environment and the reward provides feedback about the
agent’s relative performance at that timestep. The behavior of the agent is dictated by its
policy. More specifically, an agent’s policy π is a mapping from its state s to an action a.
It can either be a deterministic action given the state, π(s), or a stochastic sampling from a
distribution of actions given a state, π(a|s) = p(a|s). The goal of the agent is to maximize
its expected cumulative reward, the expected return Gt. Often, when computing the return,
the reward at each subsequent timestep is devalued by some discount γ ∈ [0, 1] so as to favor
earlier rewards over later rewards and bound expected reward in non-episodic domains:

Gt =
∞∑
k=0

γkRt+k+1. (2.1)

To provide some information about the agent’s state, at each timestep the agent receives an
observation Ot from the environment. An agent’s state is a result of the history of its inter-
actions with the environment (observations, actions, rewards). An agent’s observation Ot is
equivalent to its state St if full-observability of the environment is assumed. Furthermore,
in a setting where an agent’s state encompasses all relevant information about an agent’s
history, the transitions between states are Markovian [denoted as a Markov Decision Process
(MDP)]. In this case, the agent’s history prior to t contains no additional useful information.
However, the information provided to an agent is often incomplete and may not represent
long-term dependencies. In such a setting, the observations are not Markovian and it is
referred to as a Partially Observable Markovian Decision Process (POMDP).
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Figure 2.1: The reinforcement learning problem. At each timestep t, an agent receives
a state st and reward rt from the environment and produces an action at. The envi-
ronment then produces the next state st+1 and reward rt+1 and so on, resulting in a
loop of complementary interactions.

For the purposes of the theory behind RL, an MDP is generally assumed to be approxi-
mated. The dynamics of the agent and environment can then be defined through probability
distributions of transitions between subsequent timesteps:

P (Rt+1 = r, St+1 = s′|St, At). (2.2)

Leveraging the Markov property allows for the computation of other relevant values, such
as the state-transition probabilities,

p(st+1|st, at) = P (St+1 = s′|St = s, At = a) (2.3)

=
∑
r∈R

p(s′, r|s, a). (2.4)

and expected reward,

r(s, a) = E[Rt+1|St = s, At = a] (2.5)

=
∑
r∈R

r
∑
s′∈S

p(s′, r|s, a), (2.6)

Many RL algorithms attempt to estimate the value functions of states, v(s), or of state-action
pairs, q(s, a), which allow the agent to evaluate the favorability of being in a particular state
or of performing a particular action in a particular state. The value function is dependent on
the agent’s policy and is defined by the expected return from that state, called the state-value
function vπ(s), or state-action pair, called the action-value function qπ(s, a). Furthermore,
these functions can be defined recursively,

vπ(s) = Eπ[Gt|St = s] (2.7)

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)], (2.8)



CHAPTER 2. BACKGROUND 6

qπ(s, a) = Eπ[Gt|St = s, At = a] (2.9)

=
∑
s′,r

p(s′, r|s, a)[r + γ
∑
a′

π(a′|s′)qπ(s′, a′)]. (2.10)

The recursive representations in Equations (2.8) and (2.10) are referred to as Bellman equa-
tions for vπ and qπ, respectively.

To maximize its return, an agent must learn a policy through estimating value functions
and choosing actions based on those estimations. A policy π is better than or equal to
another policy π′ if for all states s ∈ S, vπ(s) ≥ vπ′(s). There always exists one policy that
is better than or equal to all other policies, which is the optimal policy. The optimal policy
will utilize the optimal state-value function, v∗(s) = maxπ vπ(s) and optimal action-value
function q∗(s, a) = maxπ qπ(s, a) for all s ∈ S, a ∈ A so as to select actions that result in
the agent being in states yielding the highest return. Furthermore, the action-value function
can be written in terms of the state-value function,

q∗(s, a) = E[Rt+1 + γv∗(St+1|St = s, At = a)]. (2.11)

Intuitively, this demonstrates an action-state pairing as a function of the expected gener-
ated reward and the value of the subsequent state. Thus, both value functions must be
complementary and self-consistent. Furthermore, the Bellman equations can be rewritten as
Bellman optimality equations,

v∗(s) = max
a∈A

E[Rt+1 + γv∗(St+1)|St = s, At = a] (2.12)

= max
a∈A

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)] (2.13)

q∗(s, a) = E[Rt+1 + γmax
a′

q∗(St+1, a
′)|St = s, At = a] (2.14)

=
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

q∗(s
′, a′)]. (2.15)

With an optimal state-value function v∗, the optimal policy π∗ then becomes the assignment
of nonzero probabilities to only the actions which yield the maximum in the Bellman opti-
mality equation. Thus, the optimal policy is exploitative (greedy) of the optimal state-value
function. The optimal action-value function q∗ concatenates the evaluation of next-possible
states into optimal actions at t, further simplifying the problem.

The growing field of RL continues to find new approaches and solutions to approximating
such value functions. One important consideration is the tradeoff between exploration and
exploitation. In order to adequately evaluate and approximate the value of particular states
and actions over others, an agent must have interacted sufficiently with its environment in
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novel ways (exploration). However, the state and action space may be high-dimensional, or
potentially infinite, making the exploration of every setting unfeasible with finite time and
compute. Thus, methodical exploration is important so that the agent may exploit the in-
formation it has acquired about the environment and select actions that will more efficiently
lead to better performance (exploration vs. exploitation).

2.1.3 Proximal Policy Optimization

The field of deep RL, using neural networks as value function approximators, has spawned
several different approaches in recent years among which include deep Q-learning [16] and
various policy gradient methods [17, 18]. Proximal policy optimization (PPO) [19] is one-such
policy gradient method which, similarly to trust region policy optimization (TRPO) [18], was
motivated by the goal to take the largest gradient steps on a policy without overstepping
and substantially decreasing performance. PPO has proven to be robust and been successful
on a variety of different tasks compared to other methods. The algorithm has two main
variants, one using clipping and the other using a KL-constraint. The clipped version of
PPO was shown to perform better out of the two in the original work [18] and is generally
the preferred variant of PPO; it is also the variant that we use in the following work.

Policy Gradient Methods

Policy gradient methods are on-policy, meaning that their policies update directly from
interacting with their environment, rather than storing experiences in a replay buffer (as
is the case in Q-learning). These methods compute a gradient estimator of the policy and
perform stochastic gradient ascent on it. A commonly used estimator is

ĝ = Êt[∇θ log πθ(at|st)Ât]. (2.16)

The expectation Êt[. . . ] computes the average over a batch of samples accumulated at time
t with the current policy πθ and advantage function Ât, which estimates the relative value
of the selected action in the current state (A(s, a) = q(s, a)− v(s)). The value function v(s)
is estimated by a neural network, as described in the definition of actor-critic architectures
below. The gradient estimator (2.16) is computed by differentiating the loss,

LPG(θ) = Êt[log πθ(at|st)Ât]. (2.17)

Importantly, optimization is performed once on the same trajectory so as not to create a
policy update that oversteps.

Trust Region Policy Optimization

In contrast to vanilla policy gradient methods, TRPO [18] uses a different objective func-
tion and a KL constraint to control the magnitude of the update from its previous policy.
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Formally, this is expressed as

maximize
θ

Êt
[
πθ(at|st)
πθold(at|st)

Ât

]
(2.18)

subject to Êt[DKL[πθold(·|st), πθ(·|st)]] ≤ δ. (2.19)

TRPO is an effective algorithm, but its use of a second-order method makes the optimization
process more difficult. PPO seeks to improve upon TRPO by using a simpler first-order
optimization while maintaining reliable performance.

Clipped Surrogate Objective

Without the KL constraint used in TRPO, maximizing the objective function (2.18) leads to
large policy updates. To instead create a first-order method, PPO modifies TRPO’s objective
function by penalizing policy changes using the ratio between the action probabilities of the
proposed policy and the previous policy, rt(θ) = πθ(at|st)

πθold (at|st)
. By clipping, it limits the update

to the new policy, constraining rt(θ) from moving further than the interval [1− ε, 1 + ε] for
some small ε (0.1−0.3). Thus, the minimum of the clipped and unclipped objective is taken
so as to reach a lower bound on the unclipped objective:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε(Ât)] (2.20)

Using this function, the change in rt(θ) bounded (1 + ε) above for a policy that yielded a
higher return (positive advantage) and bounded below (1−ε) for a policy that yielded a lower
return (negative advantage). Bounding the magnitude of change prevents the optimization
from taking too large of a gradient step in either direction and ensures that the probability
of unfavorable actions does not decrease to 0.

PPO Algorithm

The PPO algorithm [19] employs an actor-critic architecture, which uses two separate neural
networks to represent the policy (actor) and the value function (critic) independently of one
another. The PPO model performs a T -step trajectory and samples interactions with the
environment under the updated policy. It then computes advantage estimates and optimizes
the policy using the objective function. For actor-critic networks using shared parameters,
the loss function must include both the objective function LCLIPt (θ) and the value function

squared-error term LV Ft = (Vθ(st)−V
targ
t )2. Additionally, an entropy term S[πθ](st) can be

included to promote exploration. This yields the loss function

LCLIP+V F+S
t (θ) = Êt[LCLIPt (θ)− c1LV Ft (θ) + c2S[πθ](st)], (2.21)

where c1, c2 are coefficient hyperparameters.
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Algorithm 1 PPO, Actor-Critic Style from Ref. [19]

for iteration=1,2,. . . do
for actor=1,2,. . . ,N do

Run policy πθold in environment for T timesteps

Compute advantage estimates Â1, . . . , ÂT
end for
Optimize surrogate L wrt θ, with K epochs and minibatch size M ≤ NT
θold ← θ

end for

2.2 Animal-AI Environment

This section aims to provide motivating context for and describe the RL environment we
will be using in our work.

2.2.1 Context

In recent years, the field of RL has seen impressive achievements, reaching superhuman
performance in challenging games, such as Atari [20] and Go [21]. While these successes
have been important to the advancement of RL, they still lack the ability to more-broadly
generalize. Although such models may be able to perform well in new test settings, these
environments generally involve performing very similar types of tasks to those encountered
in training and do not generally test for different types of cognition. Even with agents out-
performing humans on certain tasks, animals and humans alike are far superior at adaptation.

Animal cognition and intelligence rests on a large bed of literature, having been studied
widely in the field of comparative psychology. Over several decades, researchers have devel-
oped a range of tasks to test for particular behavioral and cognitive constructs with rigorous
minimization of external confounding factors and noise so as to isolate the paradigm of
interest. These tasks are designed to ensure that the objective cannot be solved without
proper utilization of the cognitive function of interest. They generally require some behavior
and exploitation of knowledge/environment in order to receive a positive reward (food), or
avoid a negative reward (pain, discomfort). Some abilities tested for include object perma-
nence [22], spatial memory [23], causal reasoning [24], and tool usage [25]. Animal cognition
tasks provide an important and relevant framework for further studying and improving-upon
human-like cognition in RL. Such tests resemble real-world problems that animals and hu-
mans alike face, which require manipulation of knowledge and experience to generalize to
new settings.
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2.2.2 The Environment

The Animal-AI Environment [14] is an artificial environment inspired by work in animal
cognition and provides a platform for designing tasks similar to those used in behavioral-
intelligence research. Different experimental configurations can be created to test for various
cognitive functions; each configuration is created within an arena with the addition of simple
objects and realistic physics (gravity, collision, friction, etc.). The agent is a sphere that can
interact with its environment through its motion in eight directions – traveling through the
environment, pushing objects, and climbing slopes. Its observation space can be adjusted
to either be a monocular first-person view of pixel input or to use object-oriented raycasts
which detail the distance to the particular objects the raycasts hit. Additionally, the agent
receives information about its health, velocity, and global position. Just as most animal
cognition tasks, each setting involves obtaining a positive reward (green/yellow sphere ‘food’)
or avoiding a negative reward (red sphere ‘punishment’) within a time frame.

Figure 2.2: Animal-AI example configurations [14]. The left image displays a task
involving food supported by other objects and the use of gravity. The right image
displays a task recreating Thorndike’s puzzle box experiments [26], where the agent
must escape its enclosure and retrieve the reward outside.

A notable feature of the Animal-AI Environment is that it can employ different tasks
for the same cognitive ability or for different types of cognitive skills, while maintaining the
same basic setup so that the same agent can easily be trained or tested on new settings.
Each task is loaded into the environment through a configuration file detailing the specific
design and various parameters (object location, agent location, configuration-version, etc.)
can be easily randomized across episodes. Thus, the environment better avoids over-fitting
to one setting, forcing agents to be robust to changes. Additionally, the user has the flex-
ibility to create new experimental designs, rather than being subject to the constraints of
the environment creators.

Apart from Animal-AI’s utility in developing generalizable RL, it also provides a novel
method for studying neuroscience through biologically-inspired models. Previous research
has used computer vision to study and compare to the visual system of primates and hu-
mans [27, 28, 29, 30]. Extending such style of work and analyzing biologically-inspired models
in the context of high-level cognition will be an important next step in understanding in-
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telligence, both for the purposes of machine learning and neuroscience. A powerful feature
of this line of computational research is the ability to be able to manipulate experimental
constructs easily and control for external noise to a higher degree than what is possible in hu-
man or animal research. Artificial neural networks also have the utility that they encompass
the entire ‘intelligent’ system of interest and are accessible to full-observation, perturbations,
and any other form of analysis, whereas only a limited amount of information can be ex-
tracted about a brain’s neural system by using imaging/recording technology. Furthermore,
isolating cognitive functions of interest in the Animal-AI environment may allow us to better
understand the brain in the context of evolution facilitated by the need to perform certain
tasks for survival.

2.3 Information Theory

This goal of this section is to provide a theoretical background of the aspects of information
theory that are pertinent for the current study and their use. Although information theory
also applies to continuous variables, for simplicity we will only consider and describe systems
of discrete variables with a finite number of states, as used in our work.

2.3.1 Introduction

Since its formulation by Claude Shannon in 1948 [31], information theory has been used in
a range of fields to study data compression and transmission, and the interaction between
the two. As statistical inference and information theory have many similar components,
information theory has been used to study the theory of deep learning [32, 33, 34, 35]. This
application can be motivated by the desire to understand neural networks from the angle of
information encoding, compression, and transfer. Furthermore, the framing of the brain as
an information processing system has lead to information theory’s wide use in the field of
neuroscience [36, 37], as these tools may help us better understand the encoding of neural
information transmitted in the brain.

2.3.2 Partial Information Decomposition

Much of the work in information theory assumes the simplest case, bivariate data, origi-
nating from data-receiver pairs in engineering. However, many difficult scientific inquiries
involve three or more variables. One such example is the brain, where the encoding of an
external stimulus is often dependent on the joint activity of multiple neurons (population
coding) [38]. The brain also performs multisensory integration, combining information from
various sensory modalities (vision, audition, olfaction, etc.) to give rise to unified experi-
ence [39]. Partial information decomposition (PID) [5] is one framework that generalizes a
key measure, Shannon’s mutual information, to the multivariate case through a nonnegative
decomposition of information.
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Preliminaries

First, to describe PID, some important measures in information theory must be defined,
which can be found in more detail in Cover and Thomas’ book on information theory [40].
The most central is that of entropy, which can be described as the amount of information, or
surprise, contained in a random variable. If the value of a variable X with possible outcomes
x1, x2, . . . , xM is known with absolute certainty [p(xm) = 1, p(x¬m) = 0], it has a low entropy
– there is no additional information or uncertainty provided by any particular realization.
Alternatively, if the probability distribution of the variable is uniform with equal probability
of being in any given state [p(x1) = p(x2) = · · · = 1

M
], the variable has a high entropy –

there is a maximum amount of uncertainty about its state. Formally, the entropy H of a
random variable X with possible values x1, . . . , xM and probability mass function p(X) is
defined as

H(X) = E[− log p(X)] (2.22)

In the discrete case, this is equivalent to

H(X) = −
M∑
i=1

p(xi) log p(xi). (2.23)

Entropy is generally expressed using a logarithm of base 2 and measured in bits. Similarly,
the joint entropy can be defined as the measure of surprise for a set of variables. For a
variable Y with possible outcomes y1, y2, . . . , yN , the joint entropy of X and Y is defined as

H(X, Y ) = −
M,N∑
i,j=1

p(xi, yj) log p(xi, yj) (2.24)

Furthermore, the conditional entropy, the amount of surprise of one variable X given another
variable Y , can be defined as

H(X|Y ) = H(X, Y )−H(Y ) = −
M,N∑
i,j=1

p(xi, yj) log
p(xi, yj)

p(yj)
(2.25)

in the discrete case.

Finally, the relative entropy, more commonly known as the Kullback-Leibler divergence (KL
divergence), DKL quantifies how different one distribution p(X) is from another q(X) in
terms of surprise. The KL divergence is defined as the expectation with respect to p of the
logarithmic difference between p and q,

DKL(p‖q) = Ep[log p(X)− log q(X)]. (2.26)

In the discrete case this is equivalent to

DKL(p‖q) =
M∑
i=1

p(xi) log
p(xi)

q(xi)
. (2.27)



CHAPTER 2. BACKGROUND 13

Entropy can be further used to compute other information theoretic values, one of which is
mutual information. Mutual information I(X;Y ) is the measure of the average amount of
information obtained about one variable X given another variable Y – the difference between
the joint distribution p(X, Y ) and the product of the marginal distributions p(X)p(Y ). If X
and Y are independent, their mutual information is zero – knowing one variable discloses no
information about the other. Alternatively, if X and Y are deterministic inverse functions of
each other such that for some function f : Y = f(X), X = f−1(Y ), their mutual information
is equal to the entropy of either variable alone as all information about one variable is given
by the other. Mutual information can be written in several equivalent terms:

I(X;Y ) = DKL(p(X, Y )‖p(X)p(Y ))

= H(X)−H(X|Y )

= H(Y )−H(Y |X)

= H(X) +H(Y )−H(X, Y )

= H(X, Y )−H(X|Y )−H(Y |X)

=

M,N∑
i,j=1

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)
.

Non-Negative Decomposition of Multivariate Information

PID separates the mutual information between a set of random variables (sources) X =
{X1, X2, . . . , XN} and another random variable (target) Y into non-negative terms that de-
scribe the partial information contributed by subsets of X about Y . This can be performed
in the simplest case with two source variables, where X = {X1, X2}. In this setting, the
mutual information I(Y ;X1, X2) describes the total information contributed about Y from
X. Considering X1 and X2 separately allows for further decomposition of the information
contributed by either source. PID posits that a target’s incoming information from two
sources can either be (1) unique (information carried by one variable but not the other), (2)
redundant (mutually-shared information), or (3) synergistic (information available only from
the presence of all sources). We will refer to these as U , R, and S, respectively. For exam-
ple, X1 and X2 contribute unique information if each source provides information about the
target Y that the other source does not. Alternatively, if X1 and X2 contribute the same or
overlapping information, that information is redundant. Finally, the information provided
by X1 and X2 is synergistic if it is only present when both sources are considered jointly,
rather than separately.

One example of synergistic information is the exclusive-OR (XOR) function Y = X1 ⊕X2,
which can only be predicted by having both X1 and X2 (the parity of the set of sources).
Notably, XOR is provably the only function that maximizes synergy [41], making it a useful
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tool for studying this measure. We exploit this feature to study synergy in our experiments.

Figure 2.3: Partial information decomposition of two sources. The mutual information
between the target Y and sources X1, X2 decomposes into unique (U), redundant (R),
and synergistic (S) information accordingly.

With the measures of unique, redundant, and synergistic information, mutual information
can be decomposed accordingly:

I(Y ;X1) = R(Y ;X1, X2) + U(Y ;X1) (2.28)

I(Y ;X2) = R(Y ;X1, X2) + U(Y ;X2) (2.29)

I(Y ;X1, X2) = R(Y ;X1, X2) + U(Y ;X1) + U(Y ;X2) + S(Y ;X1, X2) (2.30)

For an arbitrary number of sources, this decomposition can be structured into a partial
information (PI) lattice, ordered with PI atoms that are more redundant towards the bottom
and more synergistic towards the top. For example, with three variables, the bottom PI atom
becomes {1}{2}{3}, representing redundant information shared by all three sources, and the
top becomes {123}, representing synergistic information only present from the joint set of all
three sources. Unique information is additionally denoted by {1}, {2}, or {3}. The presence
of three or more sources decomposes into different combinations of redundant, synergistic,
and unique information along the height of the lattice, such as {12}{3}, or the (redundant)
information shared between the synergistic information of X1, X2 and the unique information
of X3.



CHAPTER 2. BACKGROUND 15

(a) (b)

Figure 2.4: Partial information lattice for (a) two sources and (b) three sources, or-
dered with more synergistic PI atoms towards the top of the lattice and more redundant
PI atoms towards the bottom of the lattice. Figures reproduced from [42, 43] with per-
mission.

Notably, the decomposition does not specify a method to compute U,R, S – it only
defines what mutual information of several variables is composed of. Additionally, there is no
single widely-accepted method of computing these values, but instead a number of different
proposed measures [5, 44, 42]. These methods vary in the values of the measures they
yield, but overall are different formalizations of the same concept. Thus, finding consistent
results across different measures is important for verifying that observed patterns are a
consistent feature of synergistic interactions rather than a feature of the measure employed.
Our work will use several of the proposed measures, which we define below. Notably, these
measures each formulate a redundancy function. Given a redundancy function, the atoms
can be obtained by computing mutual information and solving the linear equation system
in Equations (2.28) to (2.30).

Imin Redundancy

The original work by Williams and Beer [5] proposed a quantification of redundancy titled
Imin. Intuitively, Imin encapsulates the idea that redundancy is the minimum information
that any given source provides about the target, although sources may provide different
information. Imin is computed using the specific information a variable X provides about a
particular outcome y of a variable Y . This can be written as

I(Y = y;X) =
M∑
i=1

p(xi|y) log
p(y|xi)
p(y)

. (2.31)
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Furthermore, mutual information can be written in terms of specific information,

I(Y ;X) =
N∑
j

p(yj)I(Y = yj;X). (2.32)

Imin redundancy is then formally expressed as

Rmin(Y ;X1, X2) = Imin(Y ;X1, X2) (2.33)

=
N∑
j=1

p(yj) min{I(Y = yj;X1), I(Y = yj, X2)}. (2.34)

A convenient aspect of Imin is that it can theoretically be extended to an arbitrary number
of sources, restricted only by computation and memory. However, this scales poorly for
more than two sources, as the number of terms increases rapidly and makes the computation
of these values intractable for more than approximately twenty sources. For most other
measures, computing synergy requires computing all other redundancy atoms in the PID
lattice and solving the linear system in Equations (2.28) to (2.30), which can become very
computationally expensive. Fortunately, Imin (and IMMI) bypasses this condition by using
Imax (defined the same as Imin with min substituted for max). Thus, using Imin and Imax,
redundancy and synergy can be computed more efficiently:

Rmin(Y ;X1, . . . , XM) = Imin(Y ;X1, . . . , XM) (2.35)

=
N∑
j=1

p(yj) min{I(Y = yj;X1), . . . , I(Y = yj, XM)} (2.36)

Smin(Y ;X1, . . . , XM) = I(Y ;X1, . . . , XM)− Imax(Y ;A ∈ {X1, . . . , XM} : |A| = M − 1)
(2.37)

IMMI Redundancy

Another proposed method of computing PID is that of Barrett (2015)’s IMMI [44]. It defines
redundancy as the minimum mutual information provided by any source, as opposed to its
expectation as in Imin:

RMMI(Y ;X1, . . . , XM) = IMMI(Y ;X1, . . . , XM) (2.38)

= min{I(Y ;X1), . . . , I(Y ;XM)}. (2.39)

With the IMMI redundancy function, synergy is then derived as

SMMI(Y ;X1, . . . , XM) = I(Y ;X1, . . . , XM)− max
A∈{X1,...,XM}:|A|=M−1

{I(Y ;A1), . . . , I(Y ;AK)}

(2.40)
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Related Work

In this chapter we review some of the literature that has leveraged information theory and
partial information decomposition (PID) to study various systems, including artificial neural
networks, emergent behavior, and the human brain.

3.1 Neural Networks

Understanding the way artificial neural networks learn has been a long-standing goal within
the field of deep learning. Various attempts have been made at devising theories to explain
the success of deep networks, popularly termed “black boxes”. One vein of ongoing research
has investigated such ideas in the context of information theory. Our study builds on some
of the following work and uses it for guidance and inspiration in designing our experiments.

One famous application of information theory in deep learning is that of the information
bottleneck (IB) principle. First, Tishby and Zaslavsky [32] reframed neural networks as
Markov chains that propagate and transform successive representations about the input
layer space into the output space. This formulation allowed for the study of such networks
in the proposed information plane, or the plane of mutual information values of a given
variable T (within the network’s hidden layers) with the input variable X (I(X;T )) and the
corresponding output variable (label) Y (I(T ;Y )). The authors further asserted that optimal
networks approach an IB bound, which trades off the information loss due to compression
and the information preserved about the desired output of each layer from the previous layer.

In 2017, Schwartz-Ziv and Tishby [33] extended the use of the proposed information plane
to analyze neural networks during training with stochastic gradient descent (SGD). Their
primary contribution was the distinction of two subsequent stages of learning: a drift phase,
where network layers increase mutual information on the labels I(T ;Y ), and a diffusion
phase, where network layers decrease mutual information on the input I(X;T ). Intuitively,
the drift phase can be understood as a rapid increase in information about the input being
propagated through the network for classification (fitting), as the gradient mean is initially

17
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high and the function changes quickly towards the optimum. Alternatively, the diffusion
phase can be interpreted as the minimization of the retainment of unimportant features
(compression); the gradient mean is small with high variance as empirical error is saturated
and overfitting may be avoided. The authors further claimed that the strong generalization
capabilities of neural networks are causally related to the diffusion phase and that this phase
is a property of SGD.

Although the results of these studies provided a new perspective for the theory of deep
learning, they later revealed points of caution in the use of information theory. Saxe et
al. [34] showed that the assumptions made by Refs. [32, 33] to compute finite discrete mu-
tual information values in neural networks do not generalize to all settings. In particular, the
information plane dynamics observed in [33] were attributed to the double-sided saturating
tanh activation function. Using similar discretization methods (binning), the authors found
that linear activation functions and single-sided saturating activation functions (e.g., ReLU)
instead did not yield a compression phase. They specified that double-saturating nonlin-
earities create the observed compression as neurons enter a ‘saturation regime’, caused by
the binning procedure. Furthermore, they observed that compression is not required for
generalization and that the compression phase is not a result of the stochasticity of SGD.
Finally, the study found that the compression of unimportant information and the increase
of information about the input occur simultaneously during the fitting process, rather than
in separate phases.

Goldfeld et al. [35] further studied the estimation of mutual information between input
layers and hidden layers. They extended the line of IB work by analyzing deterministic
and stochastic networks, finding that compression is a result of clustering of internal repre-
sentations. The study established that regularization suppresses the formation of clusters,
eliminating compression and again showing that compression may not be causally related
to the generalization of networks. Furthermore, the authors asserted that the measure of
binned mutual information does not accurately estimate mutual information and is instead
a quantification of clustering.

Related to the aforementioned studies was the work of Tax et al. [45], which used PID to an-
alyze the internal representations of discriminative restricted Boltzmann machines (DRBM),
a type of generative neural network model, during training on modified MNIST images. The
authors discovered two phases of learning: a first phase where source neurons predominantly
contained redundant information about the target label, and a second phase where source
neurons predominantly contained unique information about the target label. Intuitively,
these patterns suggest that neurons specialize in the second phase, allowing for disentangled
representations to emerge. The second phase also yielded an increase in synergy, perhaps
indicating neuronal specialization allows for the representation of additional distributed fea-
tures. Examining models of various sizes at convergence, the mutual information between
single neurons and the target label was found to increase with the number of neurons, sug-
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gesting that larger networks compressed less information into individual neurons and yielded
more distributed representations. This was further supported by an increase in normalized
synergy in larger subsets of neurons corresponding to the increase in size: synergistic informa-
tion became more distributed, integrating larger groups of neurons as the size of the network
grew. The order of grouping yielding meaningful synergy values is thus highly dependent
on the size of network. This observation may partially explain why larger networks perform
better as they use higher-order correlations between neurons, which may provide more com-
plex representations by integrating many sources of information. Instead, smaller networks
may be constrained to specialize neurons more (increasing their unique information) in order
to more effectively compress information and yield disentangled representations.

Shifting focus from settings pertaining to classification, another line of research has stud-
ied networks in embodied agents interacting with an environment. In 2014, Albantakis et
al. [46] investigated the behavior of small, adaptive logic gate networks (“animats”) in an
environment of increasing complexity. Animats mimic RL agents in some sense: they con-
tain sensors, hidden elements, and motors which evolve to better suite their task using a
genetic algorithm. In the study, animats learned to catch or avoid falling blocks of varying
size in a game similar to Tetris. The authors used a measure conceptually-related to syn-
ergy – integrated information Φ [11, 13], or the causal information that exists beyond that
generated by its parts (irreducible information). In addition to integrated information, the
work also studied concepts, a formalized measure of the causal repertoire specifying what
past/future states are or aren’t possible. The authors found that as the task complexity
increased, specifically in its requirement for sequential memory, animats evolved to have
more concepts and have higher measures of integrated conceptual information within their
networks. Additionally, animats with increasingly restricted sensory or motor capacities,
which created a stronger reliance on memory, also exhibited an increase in concepts and
more integrated conceptual structures. These results indicated that higher levels of integra-
tion are advantageous for constrained systems acting in complex environments. This may
be explained by the fact that such networks can use higher-order concepts to accommodate
limited access to information. This idea also relates to our results in this study, which found
that synergistic information increased with the additional complexity of tasks and need for
generalization in small networks which have a constrained neuronal information space.

The study of the effects of an agent’s environment and ‘body’ (in the form of task complex-
ity and sensory/motor capacities) on the agent’s information dynamics treated the animat’s
‘brain’ (neural network) as a separate system than its embodiment in Ref. [46]. A natural
following question to ask might be: how is information transmitted when the body, brain,
and environment of an agent are treated as a single system? Langer and Ay [47] sought
to formalize this inquiry and particularly analyze how the complexity of solving a task is
distributed among different parts (body, brain, environment) of the system. These ideas are
related to the concept of morphological computation, which refers to processes performed
by the body and environment that result in in a reduction of computational complexity for
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the brain [48]. To study these ideas, Langer and Ay [47] used agents with two protruding
sensors and a separate body, tasked with moving around a racetrack; the agents were re-
quired to move at all times and died if their body touched a wall. The entire system (brain,
body, environment) was created as a graphical model consisting of a single ‘world’ node,
two sensor nodes, two actuator nodes (corresponding to motor action), and two controller
nodes (corresponding to the ‘brain’). This framework allowed for the system interactions
to be studied as a Markov Process and to use Planning as Inference [49] for training. The
authors found that the amount of integrated information of the controller was dependent
on the information flow to (sensors) and from (actuators) the controller. Additionally, they
showed that as an agent can increasingly rely on the interaction between the environment
and its sensors, the less integrated information the controller contains, and similarly, as the
amount of information to the sensors decreases, the amount of integrated information in the
controller increases. Both of these studies [46, 47] support the idea that the complexity of
an environment and an agent’s access to information about the environment are correlated
to the information dynamics of the agent.

3.2 Emergence

The motivation to describe complex systems and behavior, specifically those which have in-
teracting hierarchical levels (e.g., microscopic vs. macroscopic), has lead to several schools of
thought. One such concept is that of reductionism, which claims that all layers of a system’s
hierarchy can be sufficiently explained by its components considered at the smallest scale.
Alternatively, the construct of emergentism asserts that there are additional properties that
arise when a system is considered at a larger scale. Although emergence does appear to
be a commonly-observed phenomena, ranging from schools of fish to the fractal patterns of
snowflakes to economic market behavior, there does not exist a single widely-accepted math-
ematical definition of it. To this end, research in systems theory has sought to formalize
emergence. In addition to other domains studying various system behaviors, a quantitative
measure of emergence could potentially provide a basis for better understanding both biolog-
ical and artificial neural networks. Natural questions that arise in this area might be: how
do macroscopic features exert causality over microscopic elements? How may higher-order
concepts or features emerge in networks? How does mind emerge from neural patterns?
Accordingly, recent work has leveraged PID to form a theoretical framework of emergence,
as the measure of synergy has an intuitive relation to the concept of emergence: information
emerging from the presence of the entire system.

One existing theory is that of causal emergence put forth by Rosas et al. [43], which builds
on the idea that macroscopic observables can exert causal influence which is not observed at
the microscopic level. To formalize this notion, the work considers a system’s evolution over
time with system measurements at time t denoted as Xt. In this setting, a supervenient
feature Vt is considered to be fully determined by the state of the system Xt at time t and
provide no predictive power about Xt+1, given Xt, forming a Markov chain. The authors
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define causal emergence as occurring when a supervenient feature Vt has irreducible causal
power, such that it only has causal influence when all parts of the system are present. Thus,
Vt is an emergent property if it contains causal information about the system and if this
information is additional to that given by subsets of the system when considered separately.
In PID terminology, this translates to a supervenient feature Vt exhibiting causal emergence
if 0 < U(Vt;Xt+1|Xt) ≤ S(Xt;Xt+1). Using integrated information decomposition [50],
which extends PID to settings with multiple targets, the study further characterized two
forms of causal emergence, downward causation and causal decoupling. Downward causation
refers to the causal influence of the irreducible supervenient feature on individual parts of
the system, whereas causal decoupling refers to the influence on other collective properties
(i.e., other supervenient features). Using its formalized definitions, the study analyzed two
systems considered to be primary examples of emergent behavior, namely Conway’s Game
of Life (GOL) [51] and Reynolds’ flocking boids model [52]. Indeed, emergent features were
found in both settings: as particle collisions in GOL and as flock dynamics in simulated
birds. Furthermore, the authors examined electrocorticogram (ECoG) and motion capture
(MoCaP) data from Japanese macaque monkeys performing a reaching task [53], finding
that the representation of motor behavior is an emergent feature of cortical activity.

Varley and Hoel [54] proposed a framework for measuring causal emergence by comparing
different dimensions (macroscale versus microscale). They introduced a partial information
spectrum to compute the proportion of total mutual information in all PI atoms at a given
height in the PI lattice, allowing for the creation of a distribution across the hierarchy of
the lattice. Intuitively, a ‘top-heavy’ distribution would yield a higher degree of synergy bias
(lower degree of redundancy bias), as the majority of information about the target is present
synergistically and vice versa. To assert the claim that information conversion occurs at
different scales, the study analyzed three logic gates (AND, OR, XOR) at a macroscale (the
gates as defined) and microscales (the gates divided into collections of gates with simpler
mechanisms) in terms of their respective synergy bias, observing that synergy bias increased
with dimension reduction. The authors also revealed the same phenomena in Boolean net-
work systems where mutual information was held constant at different scales, providing
evidence for a conversion of redundant to synergistic information, rather than a removal
of redundant information due to compression. The work related these findings to effective
information (EI) [55], a measure of causal emergence which was found to increase with
dimension reduction in previous research [56]. Finally, the authors concluded that causal
emergence can be seen as a conversion from redundant to synergistic information, with the
entropy of transitions being translated to causally-relevant EI through compression.

3.3 Neuroscience

Information theory provides a strong framework for studying the brain and has been lever-
aged widely in the field of theoretical neuroscience. Its general applicability has allowed
developing research in information theory to compliment and improve upon our understand-
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ing of the human brain. One area of interest is that of complex high-level cognition, such
as numerical cognition, reasoning, memory, and decision-making. Although it is accepted
that such processes occur in the frontal and parietal regions of the brain, it is still unknown
exactly how they proceed. In machine learning, answering this question could potentially
have wide applicability for improving upon current systems to create algorithms that are
better suited for performing complex tasks and being able to generalize as humans do.

Applying PID to data from several methodologies including fMRI, PET, cytoarchitectonics,
and genetics, Luppi et al. [6] found that synergistic information is central to complex human
cognition. In the study, the authors revealed that synergy is higher in regions of the brain
[default mode network (DMN), fronto-parietal executive control network (FPN)] that are
partially responsible for high-level cognition. Correspondingly, redundancy was found to be
higher in areas (primary motor, sensory, and insular cortices) responsible for perception and
low-level cognition. They also found that the human brain contains more synergistic infor-
mation than non-human primates and that brain regions with high synergy underwent the
largest cortical expansion during evolution. Furthermore, human genes were seen to enhance
synaptic transmission, which facilitates synergistic interactions in the brain.

Another cognitive process that has been studied using information theory is that of con-
sciousness. Currently, there does not exist one single widely-accepted theory of conscious-
ness. Thus, a central goal of the field is to work towards a theory that can provide a strong
explanation for experimental observations. In the realm of consciousness science, there ex-
ist several proposed theories of which are part of ongoing research [57]. Global Neuronal
Workspace Theory (GNWT) [8, 58, 9, 10] is one influential theory, which explains conscious-
ness as being a ‘global workspace’ for the brain that focuses its attention on salient neural
information such that it becomes available for conscious access and broadcasts that informa-
tion back to the rest of the brain. Another prominent theory is that of Integrated Information
Theory (IIT), first detailed by Giulio Tononi in 2004 [11, 12, 13]. A notable aspect of IIT
is that it provides a formal mathematical explanation and quantification for a system’s level
of consciousness and its content. It builds upon the premise that conscious experience is
a result of the integration of information from multiple elements (the whole system being
more than the sum of its parts) using information theory. Importantly, both theories address
different aspects of the integration of information into the emergent feature of consciousness,
and may in fact be complementary [7].

Central to IIT is the quantification of integrated information (Φ), or the causal informa-
tion that exists in a system beyond that generated by its parts (irreducible information).
Broadly, IIT postulates that the level of an experience (how ‘conscious’ a system is) can
be described by its maximum irreducibility Φ. Although IIT is a useful starting point for
developing a theory of consciousness, it has it limitations and critiques [59, 60]. In parallel
streams of work, there has been effort to address some of these issues using PID. In particu-
lar, previous versions of IIT’s Φ [12] have been connected to synergy, as both measures serve
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to quantify collective information about a system that can not be captured by its parts alone.

Since IIT’s formation, several measures of integrated information have been introduced.
To provide a unified explanation of the behavior of some of these different values, Medi-
ano, Seth, and Barrett [61] compared six candidate measures in complex networks. Notably,
none of the measures used were found to consistently agree across all analyses performed.
Evidently, this lack of agreement makes empirical work difficult to evaluate and interpret
across different measures. To address these problems, Mediano et al. [62] proposed integrated
information decomposition (ΦID), merging principles from both IIT and PID in an effort to
overcome limitations of both frameworks. This was motivated by the argument that IIT only
considers information transferred between parts of a system, ignoring high-order interactions
(as provided by PID’s synergy).

Related to Ref. [6], Luppi et al. [7] used PID in the context of human consciousness and
its dependence on the global integration of information as suggested by GNWT and IIT.
Using results from fMRI data, the authors identified a ‘synergistic workspace’ (comprising of
the DMN and FPN) characterized by synergistic interactions in the brain, effectively linking
GNWT and IIT. Furthermore, their study showed that synergy is reduced in this workspace
during states of unconsciousness (anaesthesia, severe brain injury) and is restored upon re-
covery. Studying how and why synergy emerges, as we do in this work, could also provide
better insight as to how and why consciousness emerges.



Chapter 4

Methodology

4.1 Logic Gate Network Experiments

To preface our work in the Animal-AI Environment, we first sought to observe synergistic
and redundant interactions in feedforward networks with the same architecture as those used
in our RL models. The primary goal of this experiment was to observe how information-
theoretic measures behave depending on the nature of the task and flow of information
(subject to dropout as described below), and support our method of computing redundancy
and synergy (discretization method, using 2nd-order measures). These experiments also
provided baseline measures before the addition of complexity provided by a RL setting; the
experiments were easier and faster to run so that additional analysis could be performed if
needed and provided a starting point for interpreting later results.

4.1.1 Task and Architecture

We trained small feedforward networks with 20 neurons (2 layers with 10 neurons each) on
learning a unique (UNQ) or exclusive-or (XOR) logic gate with two sources. For the two
types of logic gates learned, the data consisted of a two-dimensional binary input and a
binary output corresponding to the appropriate logic gate result, as displayed in Tables 4.1
and 4.2.

Table 4.1: UNQ Logic Gate.

Data Label

00 0
01 0
10 1
11 1

Table 4.2: XOR Logic Gate.

Data Label

00 0
01 1
10 1
11 0

We used networks with stochastic training methods, which could interrupt the transfer of
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information, to study the resulting patterns of information decomposition. In particular, we
used dropout, a form of regularization [63]. Dropout is used to prevent overfitting in neural
networks by randomly omitting neurons (with some given probability) during training. This
technique has the effect of approximating ensemble methods, which train many different
neural networks in parallel. Dropout creates a ‘new’ model with each successive removal of
a neuron, as the passage of information is disrupted, allowing for gradient updates to be
performed according to many different models within the network. This also adds noise to
the training process, which forces the network to be robust rather than individual neurons
becoming strongly dependent on each other. Interestingly, dropout has also been shown act
as a form of Bayesian approximation which can be used to evaluate model uncertainty [64].
In our work, dropout provides a convenient method to study the way stochastically disrupt-
ing information transfer may affect information representations and provide more intuition
about the role of different forms of information.

We specifically chose networks with small layer sizes due to the computational constraints
of calculating PID values on a large number of sources (i.e., greater than 10). Addition-
ally, we used networks with the same architecture as the networks used in our RL models
(section 4.2.1) for the purposes of consistency. Each group of networks had a varying level
of dropout applied (p = {0.0, 0.1, 0.3, 0.5}) after each linear layer. We additionally used
a rectified linear unit (ReLU) activation function, which constrains its output from [0,∞],
to simplify the discretization of the network activations as required by our synergy and
redundancy measurement method. Additionally, the use of a ReLU function avoided the
compression of mutual information associated with a double-saturating non-linearity (such
as tanh) as addressed in Ref. [34] (discussed in Section 3.1).

4.1.2 Information Decomposition Calculations

After training, we sampled the activations of the networks during testing, with network
weights frozen. Each activation value was discretized using 3 bins from [0, 5] to ensure a
sufficient number of samples in each sources-target pair. The binning range was chosen from
empirical observations of the network activations being heavily concentrated within the range
of [0, 5].

We used two different measures from the literature to compute synergy and redundancy,
namely Imin [5] and IMMI [44], as described in Section 2.3.2. These methods were favorable
due to their relative efficiency and tractability in larger systems compared to others, being
closed-form expressions for synergy which do not require the computation of the entire PID
lattice.

First, the discretized sampled data was used to calculate a probability distribution over
the set of sources and target by simply counting the number of occurrences of each joint
sources-target state and using the so-called plug-in estimator [65]. We then used Ref. [66],
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a package made for computing discrete information theory measures, to create the distribu-
tion used for our calculations. In this setting, each source may correspond to a neuron in a
layer of the network or to a set of dimensions/single-dimension of the input. Alternatively,
the target can correspond to either a subsequent layer in the network or the output of the
network. With the distribution created, redundancy and synergy can be computed using
equations Equations (2.36), (2.37), (2.39) and (2.40) for both measures.

PID values of a system can also be computed over subsets of k cardinality, denoted k-order
values. For example, a k-order synergy measure can be calculated by using only k elements
of a system as sources, rather than the entire set of elements. Performing this operation over
each combination of k elements in the system and taking the mean then gives the average
k-order synergy. This is useful because studying subsets of k sources provides the ability to
observe information representations at different scales.

Using the same methodology as the full-order case, information decomposition values were
also computed at the k-order. In this setting, we computed the same values over each com-
bination of 2 neurons in the source layer with the same target and took the mean to give the
average 2-order synergy for the given source layer and target. These values were computed
in parallel with the values computed for full-order.

4.2 Animal-AI Experiments

We next extended the idea of logic gates to the context of RL agents in the Animal-AI
Environment. Of particular interest were the questions of whether tasks which require in-
tegration of multiple sources of information (synergistic) are more difficult to perform than
tasks which do not, and whether the amount of integration of information required for the
task is correlated with the amount of synergy in an agent’s network. Another point of in-
terest was the study of synergy in task-transfer and in the addition of complexity through
compound tasks. We also were interested in observing the synergy dynamics within the RL
networks as compared to the networks from our first experiment.

4.2.1 Task and Architecture

We created several tasks to mimic 2-bit logic gates and made various extensions. The basic
design of the configurations consists of an agent placed on a platform with a pit in front
of and behind it, and left and right barriers enclosing the space (fig. 4.1). The barriers’
object type corresponds to the logic gate input it represented (a wall object representing
a ‘0’ and a cardbox object representing a ‘1’). Additionally, the output of the logic gate
corresponds to each pit: in front of the agent being ‘0’, behind the agent being ‘1’. Within
the pit corresponding to the correct output of the logic gate lies an occluded positive goal
with a reward of 4, and within the pit corresponding to the incorrect output lies an occluded
‘death zone’ with a reward of -1 which immediately terminates the episode. Thus, the agent
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is constrained to movement on the platform and can only successfully complete the task if it
uses information relayed by the bit-representing objects. Due to the larger action and state
space of the agent, this initial task still differs from the prior logic gate tasks in experiment 1;
for example, as an alternate solution, the agent could potentially learn to rotate 90 degrees
on the platform and move forward and backward, without reaching either the positive goal
or the negative death zone. Using this setup, we designed a set of four configurations (combi-
nations of 2 bits) for each gate, which were iterated through for each episode during training.

Notably, the observation space was constrained to three object-oriented raycasts, each detail-
ing the type of object hit by the ray projected from the agent and its normalized distance,
and a vector relaying information about the agent’s health, velocity, and global position.
The rays were projected 90 degrees apart – directly in front of the agent, directly to its
left, and directly to its right – ensuring that the agent had all the information required to
solve the task at initialization (fig. 4.1a). Additionally, the raycast observation space oc-
cluded the positive/negative rewards in either pit which would have otherwise been visible
to an agent receiving the full pixel space. The small observation space also facilitated the
ability for our models with small network parameter spaces to solve the task and represent
the input information adequately. Additionally, the small networks being used could more
reliably perform the task (as opposed to receiving pixel image inputs), without the need for
additional convolutional layers.

(a) (b) (c)

Figure 4.1: Example Animal-AI configurations for the 2-bit XOR task. The observation
space is constrained to raycasts directly in front and to the left and right of the agent,
occluding pixel information about the contents of the pit (i.e., the reward and the
death zone are not visible to the agent on the platform). (a) displays an aerial view
of the ‘10’-input XOR configuration, where the left cardbox barrier represents a ‘1’,
the right wall barrier represents a ‘0’ , and the backward-relative-to-agent position of
the green reward represents a ‘0’ output of the gate. The orange lines represent the
orientation of the raycasts projected from the agent. Similarly, (b) displays the agent’s
perspective for the ‘01’-input XOR configuration, whereby the ‘0’ gate output is in the
pit behind the agent on the platform. Finally, (c) displays the agent’s perspective for
the ‘11’-input XOR configuration, whereby the ‘1’ gate output is in the pit in front of
the agent on the platform.

We trained PPO models [67] with small feedforward actor-critic policy networks (2 layers
with 10 neurons each) with ReLU activation functions between each linear layer, identical
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to those used in experiment 1 for dropout p = 0.

2-Bit XOR and 2-Bit UNQ Task

Using the aforementioned logic gate base design, we created 2-bit XOR and 2-bit UNQ tasks
in the Animal AI-Environment as a baseline extension from the logic gate networks used
in experiment 1. As shown in Figure 4.1a, agents were placed on a short platform in an
effort to restrict the state space and simplify the task as much as possible to measure the
construct of interest – the minimal baseline of solving of the UNQ and XOR logic gates in
a RL setting.

3-Bit XOR Task

Interested in the effect of integrating an increasing number of sources, we additionally de-
signed a 3-bit XOR task. In particular, we created a set of eight configurations for a 3-bit
XOR gate by placing a barrier directly in front of the agent at the end of the pit, treating
it as an additional input source. Our initial use of three raycasts in the baseline 2-bit tasks
allowed for a simple extension to 3-bit by ensuring each input bit could be observed from
initialization in an effort to prevent additional bias/exploration that could be introduced by
one input bit being occluded (which would also require integrating input information over
time).

Figure 4.2: 3-bit XOR task configuration for an input of 001 and an output of 1. See
caption of Fig. 4.1 for details.

2-Bit Distance XOR Task

Another point of interest was that of creating a compound task by pairing the synergistic
XOR logic gate task with an additional non-synergistic task. One of the simplest ways to
explore this idea was to increase the distance between the agent and the reward. While such
a modification of the task may seem trivial, it significantly increases the state space of the
agent and potentially allows for the off-loading of synergistic information about the input
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into a particular trajectory based on global position. To create the task, we elongated the
platform from length 1 to length 10 such that the agent would have to travel further on the
platform before falling into the pit yielding either the reward or the death zone.

Curriculum Tasks

After observing each aforementioned task trained on individually for each agent, we sought
to analyze the ability of agents to generalize to more complex tasks and the effects of task-
transfer on the amount of synergistic information at different points during training. As
such, we employed several curriculum-style experiments. In each, agents were trained on
the baseline 2-bit XOR task until first reaching either a maximum reward threshold during
intermittent testing or a maximum number steps of training. Agents were then additionally
trained on another task (3-bit XOR or distance XOR) for a particular number of steps. We
then tested agents and computed synergy measures at several different points based on the
observed training curves, as shown in Figure 4.3a. In particular, we defined these checkpoints
as configuration 1 initialization (1I; the random initialization of the network prior to any
training), configuration 1 threshold (1T; the point at which the model successfully reached
the maximum reward threshold during evaluation), configuration 2 adaptation (2A; 10,000
training steps into in the second configuration), configuration 2 recovery (2R; the estimated
empirical point in which the mean training reward stabilizes and ‘recovers’ from its initial
decrease at the point of configuration change), and configuration 2 end (2E; the final model
at the end of training on the second configuration). Each checkpoint was tested using
the same full-set of configurations part of the training curriculum in order to standardize
synergy measures and ensure that they were comparable, rather than an artifact of the
configuration tested on (i.e., agents tested at each checkpoint were tested on the entire
curriculum regardless of whether or not they had been trained on the configuration yet).

(a) (b)

Figure 4.3: Curriculum training synergy checkpoints for (a) curricula with two config-
urations (2-bit to 3-bit XOR curriculum and 2-bit to 2-bit distance XOR curriculum),
and (b) curricula with four configurations (increasing distance curriculum).

Finally, to study transfer over several consecutive increases in complexity, we extended
the curriculum method over several configurations, increasing the platform distance to the
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reward in each subsequent configuration (lengths 1, 10, 20, 30). This was done in an effort
to observe the training and synergy dynamics with the repeated requirement to generalize
and either reuse or relearn information representations. Again, agents were trained on each
configuration until first reaching either the maximum configuration reward or the maximum
number of steps, before moving to the next task in the curriculum. The models were then
evaluated and, as shown in Figure 4.3b, synergy was computed at random initialization
prior to training (1I), the threshold point for each configuration ( T), and the initial training
points 10,000 training steps into each configuration excluding the first ( A).

4.2.2 Information Decomposition Calculations

We used the same method for computing synergy as for experiment 1. After training we
sampled the activations of the actor networks during episodes of testing on each configuration
trained on and discretized their values using 3 bins from [0, 5]. We used the same measures
from experiment 1 of Imin and IMMI , discretized via binning, for computing synergy over
the actor networks. Similarly to experiment 1, these values were computed between each
layer and the subsequent layer. Because the observation space exceeded 20 dimensions,
the proposed synergy measures could not be efficiently computed over the entire input and
instead had to be approximated by grouping larger subsets of the input space into separate
sources and computing average 2-order synergy measures. Additionally, the modularization
of the input made it possible to treat rays containing information about individual objects
as single sources and allowed for the isolation of information relevant to the task. Thus, each
object-oriented raycast was treated as a single source with its dimension distance discretized
using 3 bins from [0, 1]; the global position was also used as a single source and discretized
using 5 bins from [0, 40] (40 being the length of the arena). The 2-order synergy was then
computed over each pair of raycast sources and each pair of single raycast source and the
position source, with the target being either the first layer of neurons. We additionally
computed the mean 2-order synergy for the other layers in an effort to keep our comparisons
across layers consistent (both input and layer sources being 2-order values). This was also
supported by our observations in experiment 1 and previous findings that smaller networks
concentrate synergy at smaller scales (synergy is less-widely distributed across the network),
as compared to larger networks [45].



Chapter 5

Logic Gate Network Results

5.1 Introduction

For both UNQ and XOR logic gates, we trained an ensemble of 10 networks per dropout
probability, with each network initialized separately using a different random number gener-
ator seed. We then quantified the redundant and synergistic information between each layer
source, including the input, and its subsequent layer target, as well as between each layer
source and the output target of the model. We also repeated the same calculations with
averaged 2-order measures. Synergy and redundancy were computed using both Imin and
IMMI measures and found to agree in ordering and pattern across the network. Thus, for
display purposes, only Imin values are shown and discussed in the remainder of this section;
figures with IMMI measures can be found in the appendix. Each measure is reported in
bits. Using varying levels of dropout during training allowed us to observe how the networks
represent information about the input and how they adapt when these representations are
stochastically interrupted by the removal of a set of neurons, disrupting the flow of infor-
mation. The addition of dropout in this context can be seen as a method of regularization,
forcing the network to become more robust in its representations by encouraging redundancy
of relevant information and by pruning irrelevant information.

To preface our analyses of results, we first provide a guide for reading the figures in this
section. Each plot shows the mean [± the standard error of the mean (SEM)] measurement
(2-order redundancy, full-order redundancy, 2-order synergy, or full-order synergy) of the ten
networks trained for the specific logic gate task (UNQ or XOR) for each dropout probability
(p = 0.0, 0.1, 0.3, 0.5). Furthermore, plots are also distinguished by the target used in com-
puting the measurements: either the subsequent layer (labeled ‘Layer Target’) or the output
(labeled ‘Output Target’). For example, in plots termed ‘Layer Target’, the measurement is
computed between (1) the input sources and first layer target; (2) the first layer sources and
the second layer target; and (3) the second layer sources and the output target. Instead, in
plots termed ‘Output Target’, the measurement is computed between (1) the input sources
and the output target; (2) the first layer sources and the output target; and (3) the second
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layer sources and the output target. In all plots, the line between discrete data points is not
representative of any additional information and is only used as a visual aid.

5.2 Analysis of Redundant Interactions

(a) (b)

(c) (d)

Figure 5.1: UNQ network redundancy for varying levels of dropout. (a) Redundant
information between each input/layer source and subsequent layer target, and (b)
input/layer source and output target. (c) 2-order redundant information between each
input/layer source and subsequent layer target, and (d) input/layer source and output
target.

In Figure 5.1, we show the redundancy measurements for the UNQ logic gate networks for
varying levels of dropout. We note several observations and interpretations. First, as dropout
probability increases, redundant information from the input source to the first layer target
decreases in both the full-order (fig. 5.1a) and 2-order (fig. 5.1c) case. This can be explained
by dropout effectively pruning unimportant redundant information about the input (i.e.,
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the input bit not corresponding to the gate output), as its representation is not needed to
successfully solve the task.

Then, in the first layer sources to the second layer target, redundancy drops to approxi-
mately 0 in the full-order case (fig. 5.1a), suggesting a transformation of full-order redundant
information into another form. We argue that this redundant information is compressed into
unique information at the full-order scale, due to the relative inefficiency of representing in-
formation redundantly across many neurons instead of a single neuron or a subset of neurons.
We support this finding with additional results later in this section.

Rather than collectively decreasing as in the full-order case, in the 2-order case (fig. 5.1c),
redundancy from the first layer sources to the second layer target increases as dropout in-
creases. In this setting, dropout encourages the pruning of redundant information about
the input that is unimportant for the task and later increases low-order redundant repre-
sentations about the information that is important to resist the effects of dropout. This
is sensible, as dropout can turn off any set of neurons, resulting in important information,
which could otherwise be potentially lost, to be over-represented redundantly. The higher
presence of redundancy at a smaller-scale (2-order rather than full-order) also supports our
assertion that networks favor the compression of redundant information about the input
(predominantly to unique forms); representing redundant information across two neurons is
more efficient (and compressed) than across ten neurons.

Finally, in both the full-order (fig. 5.1b) and 2-order (fig. 5.1d) settings, the redundancy
from the second layer sources to the output target increases as dropout increases; addition-
ally, the 2-order case exhibits the same pattern in the first layer sources. This is expected,
as a redundant representation for the output is favorable due to the perturbations caused
by dropout. Again, the same pattern of higher levels of 2-order redundancy compared to
full-order redundancy is replicated, supporting our hypothesis of compression into unique
information/lower-order representations. We further note that the observed patterns of re-
dundancy in terms of relative-ranking and pattern across the network tend to mostly agree
across full-order and 2-order measures, supporting the use of smaller-order measures for
approximating higher-order information decomposition.
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(a) (b)

(c) (d)

Figure 5.2: XOR network redundancy for varying levels of dropout. Redundant in-
formation between each input/layer source and subsequent layer target, and (b) in-
put/layer source and output target. (c) 2-order redundant information between each
input/layer source and subsequent layer target, and (d) input/layer source and output
target.

Figure 5.2 displays redundancy measures for the XOR networks with varying levels of
dropout. We see that redundant information from the input sources to the first layer tar-
get are high across all dropout probabilities for both the full-order (fig. 5.2a) and 2-order
case (fig. 5.2c). Unlike the UNQ networks, dropout does not lead to pruning of redundant
information about the input because all of it is necessary for solving the XOR gate. Thus,
redundancy is preserved in cases where it important for learning the task.

The same drop in redundancy from the first layer sources to second layer target observed in
the UNQ gate occurs in the XOR gate for the full-order case (fig. 5.2a), again supporting our
interpretation of the compression of redundant input information occurring in the network.
Interestingly, unlike the UNQ gate networks, there does not appear to be a strongly distin-
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guishable pattern of redundancy related to dropout at the 2-order level (fig. 5.2c). Instead,
2-order redundancy appears to be reduced to the same approximate magnitude (∼0.2 bits)
across networks. One speculation for why this occurs is that all networks learn to represent
information about the input similarly, despite the amount of dropout applied, due to the
need to retain and process all information about the input. Thus, all networks retain infor-
mation about the input redundantly and then compress information to 2-order and unique
information in similar ways.

As in the UNQ networks, increasing levels of dropout also increase the redundancy from
the second layer sources to the output target in both full-order and 2-order cases in the
XOR networks (figs. 5.2a and 5.2c). We would expect the magnitude of redundancy in
the XOR networks to be similar that in the UNQ networks – in this setting, redundant
information appears to be used to resist the loss of important information due to dropout.
Interestingly, in the XOR networks, both full-order and 2-order redundancy is significantly
smaller in magnitude than the UNQ networks. We do not have a strong understanding as
to why this occurs and further investigation is needed to better understand these dynamics.

This observation also parallels the fact that redundant information about the output target
is also significantly reduced in magnitude for the XOR networks (Figures 5.2b,d) compared
to the UNQ networks (figs. 5.1b and 5.1d). We finally note that, as in the UNQ networks,
full-order and 2-order redundancy measures in the XOR networks are relatively consistent
in terms of relative-ranking and pattern across the network, again supporting the use of
smaller-order measures to approximate higher-order information decomposition.

5.3 Analysis of Synergistic Interactions

Similar to our measures of redundancy, we also study the patterns of synergy across the UNQ
and XOR networks in Figures 5.3 and 5.4. Consistent with our finding that dropout facili-
tates the pruning of unimportant redundant information about the input in UNQ networks
(figs. 5.1a and 5.1c), we see that irrelevant synergistic input information is also removed
(figs. 5.3a and 5.3c). Intuitively, synergistic information is less favorable with high levels of
dropout, as the removal of any subset of neurons results in a loss of distributed information.
Thus, in the case of UNQ networks where synergistic information about the input is not
needed for the completion of the task, this information is selected against.
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(a) (b)

(c) (d)

Figure 5.3: UNQ network synergy for varying levels of dropout. (a) Synergistic in-
formation between each input/layer source and subsequent layer target, and (b) in-
put/layer source and output target. (c) 2-order synergistic information between each
input/layer source and subsequent layer target, and (d) input/layer source and output
target.

In Figure 5.3, we observe that 2-order and full-order synergy drop from the first layer
sources to second layer target in UNQ networks. One may attribute this decrease in synergy
to the setting of dropout, as it clearly would not be a favorable representation within such
networks. However, this pattern is present in networks without dropout applied (p = 0.0),
meaning that all of the networks actually compress synergistic information into other forms,
regardless of whether dropout is applied. This parallels with the observation from (fig. 5.1),
whereby full-order redundant information about the input drops in the first layer sources.
Thus, the mutual drop in full-order redundant and synergistic information in UNQ networks
implies an increase in full-order unique information. Furthermore, the drop in 2-order syner-
gistic information (fig. 5.3c) also implies an increase in 2-order unique information, as 2-order
redundant information (fig. 5.1a) does not increase. These observations further support our
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finding that synergistic and redundant information is compressed into unique information
when possible and favorable, due to its increased efficiency as a representation.

Finally, there is no synergy in the second layer sources to the output target in UNQ net-
works, as shown in Figure 5.3. This is again consistent with the assertion that synergy is an
inefficient representation, which the network compresses into other forms.

(a) (b)

(c) (d)

Figure 5.4: XOR network synergy for varying levels of dropout. (a) Synergistic in-
formation between each input/layer source and subsequent layer target, and (b) in-
put/layer source and output target. (c) 2-order synergistic information between each
input/layer source and subsequent layer target, and (d) input/layer source and output
target.

Just as there is a high level of redundant information from the input sources to first
layer target for the XOR gate (fig. 5.2), there is also a high level of synergistic information
(fig. 5.4). This is due to the fact that the XOR gate requires complete information about each
input in order to be successfully predicted, yielding maximum synergy. Thus, synergistic in-
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formation about the input is crucial. We see that dropout does not prune this information
because of its importance. We see that, compared to the UNQ gate, the XOR gate elicits
more synergistic information in the network. This supports our hypothesis that the level of
synergy in neural networks is influenced by the task performed by the model; thus, tasks
can be compared by the synergy they elicit, resulting in ones that are more synergistic (i.e.,
XOR gate) or less synergistic (i.e., UNQ gate).

The same trend of synergy compression previously observed is shown in Figure 5.4 in source
layers 1 and 2, as synergy drops to minimal values. At the full-order level, this also corre-
sponds with drops in redundancy (fig. 5.2), meaning there is an increase in full-order unique
information.

Finally, both Figures 5.3 and 5.4 show a consistent correlation between full-order and 2-
order synergy, in terms of magnitude, relative ranking, and cross-layer dynamics. We use
this as support for our use of 2-order synergy in experiment 2. Importantly, this finding
shows that studying networks of our architecture (2 feedforward layers of 10 neurons each)
at the 2-order level can provide relevant and important insights about the over-arching dy-
namics and that synergy is concentrated at the 2-order level. This is also consistent with the
findings of Ref. [45] which found that the maximum amount of synergy exists in groups of two
(2-order) in small networks of 20 parameters, and becomes more distributed (larger-order
groups) as network size increases.

5.4 Summarizing Remarks

This first study was successful in revealing a number of information patterns for which we
provided an interpretation for. Our experiment suggests the following claims.

First, tasks requiring the integration of multiple sources of information (XOR gate) yield
higher levels of both synergy and redundancy in the input to the first layer compared to
tasks which do not require integration of multiple sources (UNQ gate), as a result of the
network’s pruning during training for the purposes of compression. Thus, the information
decomposition of a network is highly influenced by the task it performs and synergistic
tasks (XOR gate) elicit more synergy than non-synergistic tasks (UNQ gate). This find-
ing is crucial for the purposes of our study, as we base the remainder of our experiments on
the fact that certain tasks elicit more synergy than other tasks (synergy is a function of task).

Second, if a network has the capacity and need to fully represent synergistic or redundant
information about the input within the neuronal space, it transforms that information to
unique information; thus, both synergy and redundancy are concentrated in the input to the
first layer and are substantially reduced from the first layer to the second layer. However, if a
network requires a more distributed representation of information, as is the case for dropout,
it still maintains that information at a smaller scale (i.e., 2-order redundancy). This is also
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a significant finding, as it could provide an explanation for why redundant and synergistic
measures appear to be generally concentrated in smaller groups rather than the full set of
sources (2-order rather than full-order); this provides additional insight into the results of
Ref. [45].

Third, in this setting, 2-order synergy and redundancy appear to be somewhat consistently
correlated with full-order measures in terms of ordering and dynamics across the network,
supporting the use of k-order approximations for systems where the number sources makes
such computations unfeasible. Additionally, 2-order PID measures consistently yield the
same or higher magnitude of redundant/synergistic values, suggesting that for the given
size of the network, redundant and synergistic information are less-distributed across the
full layer space and instead are more concentrated into subsets of neurons. This may also
be explained by our re-occuring idea of compression: in addition to synergistic/redundant
information being compressed into unique information, it is also more efficient for it to be
compressed into lower-order redundant/synergistic information. We use this finding to sup-
port our use of 2-order synergy as an approximation for full-order synergy in experiment 2.

Fourth, increasing dropout leads to pruning of unimportant information about a network’s
input, regardless of whether it is synergistic or redundant (UNQ gate), but preserves relevant
information when the network has the capacity to (XOR gate).

Finally, the potential loss of neuronal information due to dropout results in higher levels
of redundancy in hidden layers of the network, varying in order scale. This increase in
redundancy allows for information to be over-represented such that it resists the loss of in-
formation due to the removal of a subset of neurons.

We note that our observations are limited and do not necessarily generalize to other systems
or settings: they may be a feature of the complexity of the task, network architecture, the
neuronal information space required to represent the input information space, and poten-
tially other confounding factors (training method, discretization method, activation function,
etc.). Further analysis is required to make any definitive claims about the nature of such
information interactions within neural networks. The purpose of this study was to provide
a basis for designing and interpreting the results of our next experiment.



Chapter 6

Animal-AI Results

6.1 Introduction

For each task, an ensemble of 10 PPO agents was trained, with each agent’s actor-critic net-
work being initialized separately using a different random number generator seed. We then
quantified synergy measures of each model at various points during training based on their
relative performance or at thresholding points. As in experiment 1, synergy was computed
using both Imin and IMMI measures and were found to agree in ordering and pattern across
the network. Thus, for display purposes, only Imin is shown in the remainder of this section
with each measure being reported in bits; figures using IMMI can be found in the appendix.

To preface this section, we provide a guide for reading the following figures. Each plot
shows the mean (± SEM) 2-order synergy of the 10 models trained for a particular task
across different time points (as described in section 4.2.1). Furthermore, each measure uses
the subsequent layer as a target (‘Layer Target’ as described in Section 5.1). In each plot,
input sources refer to the averaged synergy of either pairs of raycasts (titled ‘Pairwise Rays’)
or pairs of a single raycast and position (titled ‘Pairwise Ray/Pos’). Finally, Figures 6.5, 6.8
and 6.10 plot the mean pairwise difference of individual agent’s level of synergy at different
subsequent time points. Thus, positive values indicate a mean increase in agent’s synergy
between two subsequent time points and negative values indicate a mean decrease in agent’s
synergy between two subsequent time points; x-axis labels correspond to the two time points
compared (i.e., 1T-1I refers to the difference between time points 1T and 1I).

6.2 2-Bit XOR and 2-Bit UNQ Tasks

Our first task in the Animal-AI Environment extended the idea of simple logic gates in
experiment 1 to RL models. We were particularly interested in observing whether our results
were consistent with those of our first experiment and in creating a solvable task that could be
further expanded upon. We tested the models in this task at different points during training
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corresponding to their level of performance. In particular, for the 2-bit UNQ task, we tested
and computed synergy values at random initialization prior to training, after successfully
solving two of the four inputs to the logic gate (CKPT 2), and after successfully solving all
four inputs (CKPT 4). For the 2-bit XOR task, we additionally computed synergy on the
networks when 3 inputs to the gate were successfully solved (CKPT 3). We note that not all
models trained necessarily reached each checkpoint – some solved several inputs in tandem,
while others did not reach past a certain level of performance. As a result, Figures 6.1
and 6.2 do not display the values of all 10 models for certain time points during training,
instead showing only the subset that reached the labeled performance threshold.

(a) (b)

(c) (d)

Figure 6.1: 2-bit UNQ synergy for number of inputs to gate solved. (a, b) 2-bit
UNQ 2-order synergy between each layer source and the subsequent layer target with
pairwise ray input sources, (c, d) with pairwise ray and position input sources. Values
of layer 1 and 2 sources were too small to display on the graph.
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(a) (b)

(c) (d)

Figure 6.2: 2-bit XOR synergy for number of inputs to gate solved. (a, b) 2-bit
XOR 2-order synergy between each layer source and the subsequent layer target with
pairwise ray input sources, (c, d) with pairwise ray and position input sources.

As shown in Figures 6.1 and 6.2, the synergy values computed in this first set of tasks
are relatively low, especially compared to those observed in experiment 1. This could be
due the presence of other forms of information in the richer environment which dominate
over synergistic information. Still, the results are consistent with the patterns we expect. In
particular, synergistic information is concentrated from the input sources to the first hidden
layer target and is then converted to other forms of information (i.e., unique). Additionally,
at the point of perfect accuracy when all four gates are solved, the UNQ task yields minimal
synergy and is in fact lower than the level of synergy at initialization, suggesting pruning of
irrelevant synergistic information. This is consistent with the results of experiment 1, where
UNQ logic gate networks, especially those with high levels of dropout, pruned unimportant
synergistic information, yielding lower values of synergy compared to XOR logic gate net-
works. Additionally, the XOR task shows a consistent pattern whereby the synergy decreases
from initialization at the time point when two gates are solved, as the model has learned
the non-synergistic UNQ gate; it then increases in synergy gradually as an additional input
is integrated with 3 and 4 configurations successfully being solved. Thus, synergy increases
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as agents learn to integrate information from multiple sources.

6.3 3-Bit XOR Task

Following our initial experiment, we were interested in observing whether the number of
sources being integrated would have an influence on the level of synergy. Furthermore, we
were also curious to observe what effect, if any, curriculum training requiring the integration
of an additional source of information would have on performance and synergistic informa-
tion in the network. Notably, a 3-bit XOR gate can be computed using two 2-bit XOR
gates [i.e., for 3 bits X, Y, Z, xor(X, Y, Z)=xor(xor(X, Y ),Z). Thus, we predicted that a
curriculum transferring from a 2-bit XOR gate to a 3-bit XOR gate could potentially be
solved by re-using the learned representations in the input sources to the first layer target
(presumably, where synergistic information about the 2-bit XOR gate is compressed into
unique information to solve the gate) and learning an additional 2-bit XOR gate in the first
layer sources to second layer target, yielding more synergy in later layers of the network.

6.3.1 Single Task

For our 3-bit XOR task, we used the same general method as in the 2-bit tasks, whereby we
evaluated models and computed synergy based on which points they were able to successfully
solve a given number of configurations. As before, not all models solved each of the shown
number of gates, yielding plots which do not necessarily encompass the batch of all 10 models
for certain performance thresholds in Figure 6.3. We found that the synergy values yielded
by the 3-bit XOR task (fig. 6.3) were very similar to those yielded by the 2-bit task (fig. 6.2),
exhibiting a similar pattern of pruned synergistic information for the solving of half of the
configurations (corresponding to the non-synergistic UNQ gate), and later an increased level
of synergy as one or more sources became integrated (with 5 and 8 configurations being
solved).
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(a) (b)

(c) (d)

Figure 6.3: 3-bit XOR synergy for number of inputs to gate solved. 3-bit XOR 2-order
synergy between each layer source and the subsequent layer target (a, b) with pairwise
rays input sources, and (c, d) with pairwise ray and position input sources.

6.3.2 Curriculum Task

How do information dynamics change when an agent must adapt to integrate an additional
source of information and change its input mapping? We studied this question through cur-
riculum training, transitioning from the 2-bit XOR to 3-bit XOR task. During curriculum
training, models were tested and synergy values were computed at the training points as
defined in Section 4.2.1, namely configuration 1 initialization (1I), configuration 1 threshold
(1T), configuration 2 adaptation (2A), configuration 2 recovery (2R), and configuration 2
end (2E).

As expected, we found that synergy values increased (fig. 6.4) from the initialization of
the network as each agent reached the threshold of maximum reward or maximum number
of steps for the configuration, corresponding with the integration of both sources of informa-
tion to solve the XOR gate (fig. 6.3). Interestingly, after changing configurations to instead
train on the 3-bit XOR task, synergy values dropped (2A) from the threshold simultane-
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ously with performance significantly decreasing as agents were not able to generalize to the
new task initially. As performance gradually improved on the new task, synergy values also
increased (2R, 3E), with the final time step exhibiting the highest amount of synergy.

(a) (b)

(c) (d)

Figure 6.4: 2-bit to 3-bit XOR curriculum synergy. 2-bit to 3-bit curriculum synergy
between each layer source and the subsequent layer target (a, b) with pairwise rays
input sources, and (c, d) with pairwise ray and position input sources.

Notably, the level of synergy at the final time step of the second configuration exceeded
the level of synergy yielded at successful learning of the 3-bit XOR gate trained alone,
although most agents in the curriculum experiment were not able to reach perfect accuracy
on the task. Another observation to note is that synergy in the first and second layer sources
increased during the learning phase of the second task (2R, 2E), whereas the 3-bit XOR task
trained alone yielded minimal to no synergy in the first and second layers. One possible
explanation for these behaviors could be that the networks adapt to learning new tasks by
increasing the amount synergistic information within the network rather than using other
forms of information (redundant, unique); perhaps synergy is more efficient for learning
and extracting new information from the input than re-learning (and re-mapping) unique
or redundant representations is. This could explain the initial drop in synergy upon task
change as being a result of weight-adaptation to accommodate new information, which later
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leads to higher levels of synergy. It also supports the presence of synergistic information in
the first and second layer sources as having emerged to adapt to the new task, whereas initial
training of a first task instead learns compressed unique representations in these layers for
efficiency (synergy being an inefficient form of representation). One possibility is that the
network could reuse the learned 2-bit XOR ‘solver’ presumed to be in the input source to the
first layer target and then learn an additional 2-bit XOR in the first layer source to second
layer target to solve the 3-bit XOR gate. Synergistic information may be seen as acting as
an extractor of additional information from a learned initial mapping. Furthermore, these
results suggest a relationship between hierarchical representations, transfer learning, and
synergy.

(a) (b)

Figure 6.5: Synergy differences between subsequent training points in the 2-bit to 3-
bit XOR curriculum (a) for pairwise rays input sources, and (b) for pairwise ray and
position input sources.

One potential interpretation of these results could be that although synergy may generally
improve a system’s ability to create higher-level representations and thus correspond to better
performance, the presence of increased synergy does not necessarily indicate the performance
of the network. Indeed, in this experiment, the levels of synergy are high for the 3-bit
configuration, but the majority of agents do not successfully solve the task although their
networks have higher levels of synergy than agents that are capable of solving the task.
However, this idea does not consider the performance of both sets of agents (trained only
on 3-bit versus 2-bit to 3-bit) across both the 2-bit and 3-bit tasks. Perhaps it is the case
that agents with higher levels of synergy have better overall performance on multiple tasks,
and thus have improved generalization, than agents with less synergy. This can be tested in
future work.
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6.4 2-Bit Distance XOR Task

We next investigated compound tasks by increasing the length of the platform the agent
was placed on in order to delay reward, requiring agents to move forward or backward
for an extended period of time. We predicted that such a task could be solved in several
different ways. The agent could offload synergistic information about the logic gate into a
trajectory to the reward after its first action by instead relying on information about the
global position rather than the raycast information about the barriers. Alternatively, the
agent could continue processing relevant information about the logic gate input at each time
step and use it to inform each subsequent action towards the reward. We were particularly
interested in studying whether a simple addition of complexity to the XOR task would yield
any differences in performance or measures of synergy.

6.4.1 Single Task

(a) (b)

(c) (d)

Figure 6.6: 2-bit distance XOR synergy for number of inputs to gate solved. 2-bit
distance XOR 2-order synergy between each layer source and the subsequent layer
target (a,b) with pairwise rays input sources, and (c,d) with pairwise ray and position
input sources.
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As shown in Figure 6.6, the 2-bit XOR task using a platform of length 10 had substantially
higher levels of input source synergy compared to the previously observed tasks which only
used a platform of length 1. Furthermore, these synergy values remained high for both pair-
wise raycasts and position raycasts, potentially supporting the idea that agents continuously
integrate task-relevant information while solving the task, rather than offloading synergistic
information onto the trajectory.

6.4.2 Curriculum Task

(a) (b)

(c) (d)

Figure 6.7: 2-bit distance XOR curriculum synergy. 2-bit distance curriculum synergy
between each layer source and the subsequent layer target (a,b) with pairwise rays
input sources, and (c,d) with pairwise ray and position input sources.

Interested in expanding our results, we repeated the same experimental design of curriculum
training and evaluation, transitioning from the short distance (platform length of 1) 2-bit
XOR task to the long distance (platform length of 10) 2-bit XOR task. Again, models were
tested and synergy values were computed at training points as previously defined (1I, 1T,
2A, 2R, 2E). We observed results that were consistent with the 3-bit version of curriculum
training: after changing tasks, both performance and synergy initially dropped, as agents
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were not able to generalize to the new task. After training continued and performance
improved on the new task, the level of synergy also increased to exceed the amount of
synergy yielded by training the second configuration alone (fig. 6.7). As also seen in the
3-bit XOR curriculum experiment, there was more synergy present in the first and second
layer sources after task-transfer compared to training of individual distance XOR tasks which
yielded little to none.

(a) (b)

Figure 6.8: Synergy differences between subsequent training points in the 2-bit distance
XOR curriculum (a) for pairwise rays input sources, and (b) for pairwise ray and
position input sources.

These observations further support the idea that the networks adapted to learning new
tasks by increasing synergistic information rather than predominantly relearning unique
representations of information, even in simple extensions of tasks (supersets). As shown
in Figure 6.8, the mean difference between the amount of synergy at the end point and
recovery point of the second configuration (2E-2R) is negative for the first layer sources.
This is different from the pattern seen in the 3-bit XOR curriculum experiment, which
shows a consistent trend of increasing synergy as performance improves. As opposed to the
3-bit curriculum, in which the majority of models trained were not able to solve the second
task, most models in this curriculum did solve the task which may have led to a pruning of
synergistic information unrelated to the solving of the XOR gate itself.

6.5 Increasing 2-Bit Distance XOR Task

The observed pattern of subsequent phases of increasing and decreasing synergy with task-
transfer led us to explore whether the phenomena would continue across several configu-
rations. To do this, we trained agents on curricula consisting of four configurations with
progressively increasing platform distances (lengths 1, 10, 20, and 30). The agents were then
evaluated at initialization (1I), each threshold point (maximum reward or number of steps;
T), and adaption in each task following the first (10,000 steps in the new configuration;
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A). The results are shown in Figures 6.9 and 6.10. Again, the same dynamic of modulating
synergy values (synergy increasing from initialization to threshold, decreasing from thresh-
old to initialization of new configuration, and increasing again to threshold, surpassing the
previous threshold level of synergy) was present in the input sources to first layer target for
the first three configurations. This further supports our hypothesis that synergy improves
the ability for models to generalize to new tasks, with less reliance on relearning the mapping
of unique information, as it continues across the changing of multiple tasks.

(a) (b)

(c) (d)

Figure 6.9: 2-bit increasing distance XOR curriculum synergy between each layer source
and the subsequent layer target (a,b) with pairwise rays input sources, and (c,d) with
pairwise ray and position input sources.

Interestingly, the fourth configuration exhibited the opposite pattern, with the amount
of input synergy at initialization remaining at approximately the same magnitude as that in
the third configuration threshold, and then dropping upon reaching the configuration four
threshold. This also corresponds with the difference between subsequent steps appearing to
decrease in magnitude, effectively ‘leveling off.’ One possible explanation for this behavior
is that the information space available for partitioning into synergistic information about
the input is reached. Thus, synergy is eventually bottle-necked due to the need for other
forms of information. Due to the network’s inability to increase synergistic information
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without losing valuable unique information, synergy is subsequently pruned and other forms
of representation must be re-learned.

(a) (b)

Figure 6.10: Synergy differences between subsequent training points in the 2-bit in-
creasing distance XOR curriculum for (a) for pairwise rays input sources, and (b) for
pairwise ray and position input sources.

Another possible explanation could be that, in this setting, the models have learned
a sufficient mapping by the fourth configuration such that they do not require additional
synergistic information for ‘re-learning.’ After the changing of task using a platform of
length one to length ten, much of the novelty of the transfer has been revealed. Thus,
agents may not be learning much additional information with each following configuration,
creating the ‘leveling-off’ of synergy. Perhaps the change to the fourth configuration does
not require any synergy to generalize to, as the agents have learned to continue moving in
one direction indefinitely based on the barrier types (bits), and thus yield an approximately
equal amount of synergy from the third configuration threshold to 10,000 steps into the fourth
configuration. If this occurs, the decrease in synergy at the fourth configuration threshold
could be seen as a pruning of additional information that is unnecessary for solving the task.
Future work should investigate this observed pattern of synergy ‘leveling-off’ further.
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Discussion and Future Directions

Humans’ and animals’ capability to perform and generalize over complex tasks distinguishes
us from current machine learning models. Understanding how biological brains are able
to perform such computations is a question that has been widely studied, but is still not
fully-understood. Of the many different approaches to studying both biological and artificial
neural networks, one point of convergence is that of information theory. Leveraging the tools
of PID, there has been evidence shown for information synergy’s correlation to complex cog-
nition and consciousness in the brain. In this study, we use the same measures to analyze
information dynamics in artificial models performing various tasks, both in a classification
and a reinforcement learning setting.

Our results show that synergy is a function of task. In both supervised networks and RL
models learning logic gates, the amount of synergy is partially-dependent on the amount
of input information required for successfully solving a task. Hence, tasks which do not
necessitate the use of multiple sources of information yield lower values of synergy. This
observation is further supported by the fact that dropout prunes synergy in tasks which do
not require integration of information, but maintains high levels of synergy when required
for successful completion of the task. Our study shows that dropout can be seen as a form of
regularization which increases redundancy of important information and reduces synergy of
irrelevant input, but preserves essential synergistic information. In RL models, we also see
that synergy increases as additional information is successfully integrated for solving a given
task. This is expected since, by definition, synergistic information is present when additional
information is yielded by the presence of multiple sources meaning that systems which suc-
cessfully perform tasks which require such integration will have some level of synergy.

One may be inclined to ask why synergistic information is more prevalent from input sources
to first layer target compared to the rest of the network, and why networks performing non-
synergistic tasks still do not also exhibit high levels of synergy. We argue that due to its
distribution across neuronal space, synergistic information is a less efficient form of repre-
sentation. Rather than compressing information into one neuron (i.e., unique information),
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synergy requires the use of several neurons. This is supported by the fact that across all
models trained in this study, there was a consistent trend of the highest level of synergy
existing from the input sources to the first hidden layer target, whereas all layers afterwards
compressed the information into other forms (2-order redundant, unique). Notably, this does
not exclude synergy from ever being present in other layers or networks – if the extraction of
synergistic information is important for learning a task and creating higher-level representa-
tions or for generalization, synergy may still exist. This presents a trade-off in the networks
between representation efficiency and potentially richer representations/ability to perform
several different tasks.

The present study also suggests that the level of synergy is influenced by the training method.
This also serves as an extension to the previous idea of synergy being a function of task; in
this setting, the task is learning subsequent sub-tasks. In particular, curriculum-style train-
ing requiring the transfer of tasks yields higher levels of synergy upon successful completion
of each subsequent new task than in the previous task. One possible explanation for this
behavior could be that networks which have already learned a given mapping of input adapt
to new tasks by extracting synergistic information rather than relearning other unique rep-
resentations. This could be due to the accommodation of additional synergistic information
in a trained model being potentially more efficient than the relearning of unique information
about the input. Thus, networks could be seen as remapping unique information to syner-
gistic information in the new task (in cases where the new task is relevantly related to the
previous task), causing an increase in synergy compared to networks which specialize for
an individual task and learn to most effectively compress synergistic information pertaining
to the task. If true, this phenomena could also explain the slight drop in synergy from the
last timestep in one configuration to 10,000 timesteps into the following configuration. The
slight decrease could be due to the need to redirect and relearn some of the previous syner-
gistic mappings. The progressive leveling-off of synergy differences with each additional task
could be a result of agents learning minimal additional information when transitioning to
the fourth configuration due to sufficient prior training on increasing distance tasks; thus, no
additional synergy is required for the ‘new’ task as the agent has already learned sufficient
mappings for generalizing to it. An alternative explanation for this behavior could be that
networks reach a threshold point of maximum synergy contained in the network without
losing other important unique or redundant information.

Our results also showed 2-order synergy to be partially-correlated with full-order synergy
in small networks (20 neurons) in terms of relative-rankings and cross-layer dynamics, al-
though larger in magnitude. This observation is consistent with Ref. [45], which found the
distribution of synergy across neuronal space to be related to layer size (smaller networks
yield maximum levels of synergy in smaller groups of neurons).

In summary, our study provides a basis for future exploration into the following claims:
1. Synergy is a function of task.; 2. There is a trade-off between the higher-order represen-



CHAPTER 7. DISCUSSION AND FUTURE DIRECTIONS 54

tations yielded by synergistic information and the efficiency provided by compression into
unique information. Networks try to compress synergistic information about the input into
unique information when possible.; 3. In task-transfer, the accommodation of synergistic
information is more efficient than relearning other forms of information and results in higher
levels of synergy.; 4. Lower-order synergy is partially-correlated with higher-order synergy
in relative-rankings and cross-layer dynamics in small networks.

What do these observations mean for neuroscience? To preface, these speculations pro-
vide suggestions and questions for further study, rather than definitive claims about the
brain. First, the evidence that synergistic information is leveraged by the human brain for
complex cognition [6, 7] is replicated in our simplified models of the brain (artificial neural
networks), supporting their use for the study of information dynamics in learning systems
and the idea that previous findings of synergy’s relation to human intelligence may also be
applicable to machine learning.

This work also highlights a difference between machine learning and the brain. Machine
learning generally begins with models that are ‘blank’ and become extremely specialized
for a specific task, whereas the brain is much better at generalization across many different
tasks, although it may trade off performance in one specific task. We see the exact same
analogy in our experiments – RL models trained on only one relatively difficult task (i.e., 3-
bit XOR) perform better than agents forced to generalize from a simpler task to the difficult
task (i.e., 2-bit to 3-bit XOR), but have significantly less synergistic information. Comparing
the representations between our RL agents and brains, this reveals an important feature of
synergy which depends on the learning trajectory of the system. Perhaps the human brain
is highly-synergistic because of our ‘learning trajectory’, being forced to generalize across
increasingly many settings, such that our brain develops to have more synergistic represen-
tations throughout life.

Our study also provides explanations for the human brain having evolved to become more
synergistic [6]. Perhaps the brain evolved to integrate information synergistically in order to
perform tasks using multiple sources of information and to generalize to increasingly new set-
tings. For instance, non-human primates may have developed brains which were conducive
to tasks innately common to their species (finding food, reproducing, taking care of off-
spring, etc.). Maybe humans were using similar ‘hardware’ to learn new tasks, such as using
tools. Conceivably, our study suggests this could lead to more synergy in individuals’ brains.
Perhaps brains which could represent more information synergistically were better suited to
adapt to their environment and perform new tasks ‘intelligently’; perhaps higher levels of
synergy provided greater flexibility in the learning process and acted a form of buffering
for changing between tasks rather than specializing on one particular task. Furthermore, if
synergy and other information-theoretic values (integrated information) are indeed related
to consciousness, as suggested by [7, 11, 12, 13], our results could also suggest that con-
sciousness is an emergent feature of complex and generalizable intelligence. This relates to
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Feinberg and Mallat’s ideas on global operant conditioning, which argued that animals capa-
ble of learning complex behaviors from experience based on rewards (and punishments) must
have a conscious perception of pleasure (and pain) in order to learn the behavior related to
these stimuli [68].

Another interpretation could be that the previously observed concentration of synergy in
the prefrontal cortex [6] could be explained by the need to integrate information from var-
ious brain regions for complex tasks and generalize across those sources of information. If
synergy is indeed a less-efficient form of representation, this could also explain the reduc-
tion of synergy in other areas of the brain responsible for low-level cognition where unique
and redundant information dominate. While these areas may exhibit low-order synergy, the
need for higher-level representations may indeed be unnecessary, inefficient, and potentially
harmful if unique information is more suitable for processing neuronal input.

What might our findings mean for machine learning? Similar to other work attempting
to study the theory of deep learning with information theory, our results provide a new
interpretation for the way artificial neural networks distribution information to learn and
transfer to new tasks, as well as raise many questions for future study. We show that neu-
ral networks compress incoming information into unique representations when possible, but
use synergistic information to reuse learned unique mappings and extract novel information
about a task. Thus, synergy can be viewed as aiding the process of generalization and adap-
tation through other ‘channels’ of information mapping. However, due to the inefficiency of
synergistic representations, there is likely a trade-off between the neuronal space allocated to
synergistic information and unique information. Thus, synergy is often more concentrated
at smaller orders, previously found to be relative to the size of the network [45]. These
observations are complementary with the widespread success of neural networks with many
parameters and layers. Wide networks provide a larger information space to encode both
unique and synergistic information, allowing for less of a constrained partitioning between
the two. Deep networks allow for unique and synergistic representations to be built off of
those in the previous layers. For example, a subsequent layer could conceivably encode ad-
ditional synergistic information about two or more pieces of synergistic information in the
previous layer, allowing for increasingly higher representations to be created, if favorable.

These results are particularly exciting for continual learning cases, where one could speculate
that networks learn representations for a first task in the input layer or first several layers.
Then, when switching tasks, perhaps the networks could use later layers to ‘extrapolate’ from
these first representations synergistically. Thus, as shown in our curriculum experiments, we
see an increase in the synergy of later layers when agents are trained on subsequent tasks,
whereas there is little to no synergy when trained on a single task. Our results also show that
different training histories reflect not only different capabilities in terms of which tasks an
agent can perform, but also the internal structure of the information in the system. We are
able to distinguish between these agents by the way they allocate their information space.
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Notably, our results have only pertained to the unidirectional case of transfer. Studying
whether models can perform bidirectional transfer using learned unique and synergistic rep-
resentations is of particular importance in the context of generalization.

Another interesting question is whether initial synergy could provide greater flexibility upon
the learning process. We see that randomly initialized networks begin with a small amount
of synergy and, throughout the learning process, either increase or decrease this initial level.
Could synergy provide a buffer for changing between different tasks rather than specializing
on one particular task? For instance, if network weights are initialized to have higher levels
of synergy within them, could networks learn faster and generalize better? If so, this would
clearly be a very interesting result for the machine learning community. It would also par-
allel our observations about the synergistic brain and its ability to perform complex cognition.

In addition to theoretical understanding, further analyzing the relationship of synergy and
learning has relevant applications. It could potentially inspire new approaches to improving
current architectures and optimization methods which may improve the way information is
extracted, represented, and partitioned in networks.

Limitations

We emphasize that our study is limited and that our observations do not necessarily gener-
alize to all settings. We make no claim that the assertions made in this work are universal
proof for information dynamics in neural networks. Instead, we hope to use this work as a
proof of concept for previous neuroscience research and as a basis for inspiring future investi-
gations in synergy’s relation to learning and generalization in biological and artificial neural
networks. Our results could be influenced by a number of different factors, including opti-
mization method (ADAM), activation function (ReLU), discretization method (3 bins from
0 to 5), network size (20 parameters), network architecture (feedforward), RL model (PPO),
synergy measures (Imin, IMMI), and specific task design. Furthermore, synergy measures are
influenced by the sample of episodes tested on, making the comparison across models tested
on different samples (i.e., different tasks) limited. Thus, the most definitive evidence exists
at the level of within-task comparisons and overall task-dynamic comparisons. Additionally,
due to the computational cost of training RL models in complex environments, our sample
size of 10 was somewhat small, yielding somewhat high variance in some measurements.
Allotted task difficulty and corresponding performance were also constrained by the small
size of the actor-critic network, necessitated for tractably computing full-order synergy.

Future Work

Beyond experimental results and analyses, the design of this project provides a strong frame-
work and large capacity for future work. Part of the utility of using the Animal-AI envi-
ronment comes from the ability to continually create new paradigms for testing particular
cognitive abilities and studying various types of tasks. First, future research should seek
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to resolve the limitations of this study in order to make more definitive claims about the
behavior of synergy in RL models. In particular, reproducibility across different task regimes
and types of models is critical to better establish whether the observed patterns are con-
sistent. The potential relationship between synergy and flexibility in generalization should
also be rigorously studied, including the evaluation of bidirectional task-generalization. As
previously stated, future studies should also investigate whether the initial level of synergy
in networks predicts future performance.

Another point of interest would be to study the way information is encoded and localized
in networks. Although we believe from this study that input information is predominantly
compressed into unique and low-order synergistic/redundant information, we do not have a
strong understanding of how this occurs. We also do not know how to determine the order
of maximum localization without computing values over several orders. If information is
localized in some way, we may be able to better determine how this information is encoded.
Further study of such processes may aid in interpreting our models and better extracting
from entangled representations (synergistic information).

Limited by our sole use of feedforward networks, we are particularly interested in expanding
our study to include recurrent neural networks. The brain is known to compute information
recurrently and a comparison with feedforward networks would be useful for studying the
role of memory on network information decomposition. This would also allow for tasks with
an increased-reliance on integrating different sources of information across time. Another
extension of interest would be the use of models implementing global workspace-inspired
architecture to further investigate the idea of a synergistic workspace as proposed by [7],
merging two major theories of consciousness.



Chapter 8

Conclusion

In this work, we analyzed information decomposition interactions in machine learning set-
tings. We first observed the effects of dropout, a popular form of regularization in deep
learning, on synergy and redundancy in supervised models learning two types of logic gates,
UNQ and XOR. In our following set of experiments, we studied synergy in reinforcement
learning agents as they performed increasingly complex tasks in the Animal-AI environment.
Our results supported two main findings. First, synergy is an inefficient representation that is
compressed into unique information and low-order synergistic/redundant information when
possible. Second, synergy is used to adapt to new tasks, as it allows for additional extraction
of input information without significantly changing the unique or redundant representations
in the network. As such, settings requiring generalization to new tasks yield more syn-
ergy than tasks performed in isolation. Our findings create a new interpretation of synergy
as providing the capacity for generalization and ability to extract new information. Fur-
thermore, we re-frame the partition of mutual information into synergistic information and
unique information as presenting a trade-off between complex higher-level representations
and efficiency of information flow, respectively.
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Chapter 9

Appendix

.1 Figures from Logic Gate Network Experiments Us-

ing IMMI

(a) (b)

(c) (d)

Figure 1: UNQ network redundancy for varying levels of dropout. (a) Redundant
information between each input/layer source and subsequent layer target, and (b)
input/layer source and output target. (c) 2-order redundant information between each
input/layer source and subsequent layer target, and (d) input/layer source and output
target.
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(a) (b)

(c) (d)

Figure 2: XOR network redundancy for varying levels of dropout. Redundant informa-
tion between each input/layer source and subsequent layer target, and (b) input/layer
source and output target. (c) 2-order redundant information between each input/layer
source and subsequent layer target, and (d) input/layer source and output target.
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(a) (b)

(c) (d)

Figure 3: UNQ network synergy for varying levels of dropout. (a) Synergistic informa-
tion between each input/layer source and subsequent layer target, and (b) input/layer
source and output target. (c) 2-order synergistic information between each input/layer
source and subsequent layer target, and (d) input/layer source and output target.
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(a) (b)

(c) (d)

Figure 4: XOR network synergy for varying levels of dropout. (a) Synergistic informa-
tion between each input/layer source and subsequent layer target, and (b) input/layer
source and output target. (c) 2-order synergistic information between each input/layer
source and subsequent layer target, and (d) input/layer source and output target.
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.2 Figures from Animal-AI Experiments Using IMMI

(a) (b)

(c) (d)

Figure 5: 2-bit UNQ synergy for number of inputs to gate solved. (a, b) 2-bit UNQ 2-
order synergy between each layer source and the subsequent layer target with pairwise
ray input sources, (c, d) with pairwise ray and position input sources. Values of layer
1 and 2 sources were too small to display on the graph.
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(a) (b)

(c) (d)

Figure 6: 2-bit XOR synergy for number of inputs to gate solved. (a, b) 2-bit XOR 2-
order synergy between each layer source and the subsequent layer target with pairwise
ray input sources, (c, d) with pairwise ray and position input sources.
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(a) (b)

(c) (d)

Figure 7: 3-bit XOR synergy for number of inputs to gate solved. 3-bit XOR 2-order
synergy between each layer source and the subsequent layer target (a, b) with pairwise
rays input sources, and (c, d) with pairwise ray and position input sources.
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(a) (b)

(c) (d)

Figure 8: 2-bit to 3-bit XOR curriculum synergy. 2-bit to 3-bit curriculum synergy
between each layer source and the subsequent layer target (a, b) with pairwise rays
input sources, and (c, d) with pairwise ray and position input sources.
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(a) (b)

Figure 9: Synergy differences between subsequent training points in the 2-bit to 3-bit
XOR curriculum (a) for pairwise rays input sources, and (b) for pairwise ray and
position input sources.
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(a) (b)

(c) (d)

Figure 10: 2-bit distance XOR synergy for number of inputs to gate solved. 2-bit
distance XOR 2-order synergy between each layer source and the subsequent layer
target (a,b) with pairwise rays input sources, and (c,d) with pairwise ray and position
input sources.
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(a) (b)

(c) (d)

Figure 11: 2-bit distance XOR curriculum synergy. 2-bit distance curriculum synergy
between each layer source and the subsequent layer target (a,b) with pairwise rays
input sources, and (c,d) with pairwise ray and position input sources.
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(a) (b)

Figure 12: Synergy differences between subsequent training points in the 2-bit distance
XOR curriculum (a) for pairwise rays input sources, and (b) for pairwise ray and
position input sources.
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(a) (b)

(c) (d)

Figure 13: 2-bit increasing distance XOR curriculum synergy between each layer source
and the subsequent layer target (a,b) with pairwise rays input sources, and (c,d) with
pairwise ray and position input sources.



CHAPTER 9. APPENDIX 73

(a) (b)

Figure 14: Synergy differences between subsequent training points in the 2-bit in-
creasing distance XOR curriculum for (a) for pairwise rays input sources, and (b) for
pairwise ray and position input sources.
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