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ABSTRACT

Many complex tasks and environments can be decomposed into simpler, inde-
pendent parts. Discovering such underlying compositional structure has the po-
tential to expedite adaptation and enable compositional generalization. Despite
progress, our most powerful systems struggle to compose flexibly. While most of
these systems are monolithic, modularity promises to allow capturing the compo-
sitional nature of many tasks. However, it is unclear under which circumstances
modular systems discover this hidden compositional structure. To shed light on
this question, we study a teacher-student setting with a modular teacher where
we have full control over the composition of ground truth modules. This allows
us to relate the problem of compositional generalization to that of identification
of the underlying modules. We show theoretically that identification up to linear
transformation purely from demonstrations is possible in hypernetworks without
having to learn an exponential number of module combinations. While our theory
assumes the infinite data limit, in an extensive empirical study we demonstrate
how meta-learning from finite data can discover modular solutions that generalize
compositionally in modular but not monolithic architectures. We further show that
our insights translate outside the teacher-student setting and demonstrate that in
tasks with compositional preferences and tasks with compositional goals hyper-
networks can discover modular policies that compositionally generalize. 1

1 INTRODUCTION

Modularity pervades the organization of artificial and biological systems. It allows building com-
plex systems from simpler units: objects are constructed from parts, sentences are compositions of
words and complex behaviors can be decomposed into simpler skills. Discovering this underlying
modular structure promises great benefits for learning. Once a finite set of primitives has been ac-
quired, it can be recomposed in novel ways to quickly adapt to new situations offering the potential
for compositional generalization. For instance, having learned to solve tasks that require pushing
green boxes and tasks that require jumping over red boxes, an agent that has decomposed its skills
appropriately, can flexibly solve tasks that require jumping over green boxes and pushing red boxes.

While monolithic architectures, in which the whole network is engaged for all tasks, are powerful,
they lack a built-in mechanism to decompose learned knowledge into modules. This puts them at
a potential disadvantage as they might have to learn each of the exponentially many combinations
individually even if their constituent modules were all previously encountered. For instance, it is
unclear to what extent monolithic large language models can compositionally generalize beyond the
training distribution (Srivastava et al., 2023; Press et al., 2023; Dziri et al., 2023).
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1Code available at https://github.com/smonsays/modular-hyperteacher
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Figure 1: A Diagram contrasting the hypernetwork as a modular architecture to a monolithic archi-
tecture. B Toy example illustrating the modular teacher-student setting where tasks are drawn from
parameter module compositions of a teacher hypernetwork.

This raises the question whether a modular architecture built from independent modules that can be
combined flexibly can more easily extract modular structure from an environment with underlying
compositional structure. Typically modular architectures are expressive enough to collapse to the
monolithic solution of modeling all task combinations encountered during training and often do so
in practice (Kirsch et al., 2018; Shazeer et al., 2017; Bengio et al., 2016; Rosenbaum et al., 2018;
Mittal et al., 2022). Identifying the correct modules is further complicated by the fact that the
learning system only ever encounters data generated from mixtures of modules without access to
the ground truth decomposition.

Here we aim to illuminate the question what properties of the data generating process allow to
discover modular solutions enabling compositional generalization. We do so within the framework
of multi-task learning where a learner encounters input/output pairs on a set of tasks composed
of few underlying modules. As modular architecture, we specifically consider hypernetworks (Ha
et al., 2017), a general form of multiplicative interaction (Jayakumar et al., 2020) which allow to
express compositions in weight space used by many multi-task models (Kumar & Daume III, 2012;
Ruvolo & Eaton, 2013; Perez et al., 2018). Our main contributions are as follows:

• We setup a multi-task teacher-student setting with a modular teacher instantiated as a linear hy-
pernetwork that gives us precise control over the underlying modules and their composition. It
allows us to cast the problem of compositional generalization as an identification problem.

• We provide a new identifiability result in this setting showing that in the infinite data limit the
modules of a perfect student with zero training loss are a linear transformation of the teacher
modules. Crucially, observing a linear number of sparse module combinations is sufficient for the
student to generalize to any combination of modules.

• In an extended teacher-student setting, we demonstrate empirically how meta-learning from finite
data of sparse module combinations can discover modular solutions that generalize composition-
ally in modular but not monolithic architectures.

• We validate that our results translate to more realistic settings of learning action-value functions
for compositional preferences and learning of behavior policies for compositional goals.

2 METHODS

Compositionality To endow our data generating distributions with compositional structure, for
each task we recombine sparse subsets of up to K components from a pool of M modules.
Each task can be fully described by a latent code z ∈ Rm that specifies the combination of
module parameters (Θ(m))1≤m≤M which parameterizes a task-shared function g with parameters
ω(z) =

∑M
m=1 z

(m)Θ(m). Being exposed only to demonstrations of such tasks with their underly-
ing modular structure hidden, the naive strategy for a learner would be to learn every combination
separately inside a single monolithic network. As the number of modules grows, the quantity of
possible combinations increases exponentially, requiring more and more capacity. In contrast, iden-
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tifying underlying compositional structure not only affords a more compact representation, it also
potentially allows the learner to generalize to unseen compositions.

Modular and monolithic architectures. For a learning system to be able to leverage the compo-
sitional structure of a family of tasks, its model architecture needs to be able to efficiently represent
the corresponding class of compositions. Here we contrast modular and monolithic architectures
(see Figure 1A) and investigate under which circumstances they admit functionally modular solu-
tions that reflect the compositional structure of the data generating distribution. To test our models
for compositional generalization, we hold-out a number of module combinations when we sample
tasks for training. At evaluation time we can then test the ability of all models to solve the held-out
out-of-distribution (OOD) tasks.

As our modular architecture of choice we consider hypernetworks (Ha et al., 2017) that allow to
express a wide class of multiplicative interactions (Jayakumar et al., 2020). A hypernetwork h is
a neural network that generates the parameters ω for a target neural network g(x;ω) which itself
processes the task data. The hypernetwork takes as input a task-specific embedding vector ϕ and
is parameterized by the task-shared parameters θ, i.e. ω = h(ϕ;θ). We can think of h as a
function that maps ϕ to a selection of flattened module parameters (Θ(m))1≤m≤M . In the case of
a linear hypernetwork, h is simply a linear function of ϕ resulting in a linear combination of the
module parameters. In the case of nonlinear hypernetworks, h is a separate neural network whose
penultimate layer can be thought of as selecting among the module parameters.

As an example for a popular class of monolithic architectures we consider the commonly used motif
of combining a large and expressive feature encoder shared across tasks combined with a task-
specific decoder (e.g. Lee et al., 2019; Bertinetto et al., 2019; Raghu et al., 2020). Here we focus
on ANIL (Raghu et al., 2020) which uses a linear decoder, i.e. f(x,ϕ,θ) = ϕ⊤g(x;θ) where ϕ
is a task-specific matrix. In addition, we consider the widespread MAML architecture (Finn et al.,
2017) with f(x,ϕ,θ) = g(x;ϕ(θ)) where the task-shared parameters θ are used to initialize the
task-specific parameters ϕ. For additional details on the architectures please consider Appendix D.

Meta-learning Even if a model supports flexible compositional representations, discovering the
hidden latent structure of a task distribution simply from observing demonstrations is difficult. A
common paradigm to extract structure shared across tasks is meta-learning which we will consider
in the following (Finn et al., 2017; Zhao et al., 2020). Formally, we consider a distribution Pz over
task latent codes z which has compositional structure. A given task z defines a joint distribution over
input x and output y, from which two datasets are sampled, Dsupport

z = {xi, yi}N
support

i=1 and Dquery
z =

{x′i, y′i}N
query

i=1 . We allow the model to infer the task latent code from the demonstrations in the support
setDsupport

z by optimizing the task-specific parameters ϕ, obtainingϕz(θ), before querying the model
on the query set Dquery

z to update the task-shared parameters θ. The meta-learning problem can be
formalized as a bilevel optimization problem

min
θ

Ez∼Pz [L(ϕz(θ), θ;Dquery
z )] s.t. ϕz(θ) ∈ argmin

ϕ
L(ϕ, θ;Dsupport

z ) (1)

where L is a loss function, here we are using the mean-squared error and the cross-entropy loss. To
derive our theory, we assume the infinite data limit which allows us to consider a simpler multi-task
learning problem with Dquery

z = Dsupport
z resulting in a single objective

min
θ

Ez∼Pz

[
min
ϕz

L(ϕz, θ;Dz)

]
. (2)

We optimize it in practice by running gradient descent on the task-specific variable ϕz until con-
vergence for each gradient update of the task-shared parameters θ. In contrast to the bilevel op-
timization, no second order gradients need to be computed. At inference, we consider a new dis-
tribution P test

z , for which the support can be disjoint with that of Pz , and report the expected loss
Ez∼P test

z

[
minϕz L(ϕz, Θ̂;Dz)

]
.

3 THEORY

We seek to understand what properties of the data generating distribution allow a modular architec-
ture to discover a functionally modular solution and thereby enable compositional generalization.
The core idea is to extend the classic teacher-student problem to a multi-task setting, where the
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teacher has a compositional representation. This allows us to relate the problem of compositional
generalization to that of parameter identification in the student as a necessary and sufficient condi-
tion. For both the teacher and the student we choose linear hypernetworks (Ha et al., 2017) which
afford a natural interpretation in terms of module composition. Each task can then be described
concisely given a task latent variable that conditions the teacher hypernetwork to generate demon-
strations given the selected sparse, linear combination of modules. We show that in the infinite data
limit the student can identify the teacher modules up to linear transformation without access to the
task latent variable if the following conditions are satisfied:

(i) The training distribution has compositional support, i.e. all modules we wish to compose in
the OOD task have been encountered at least in one training task (c.f. Wiedemer et al., 2023).

(ii) The training distribution has connected support, i.e. no subset of modules appears solely
in isolation from the rest, as otherwise we cannot guarantee modules can be consistently
composed in the student.

(iii) No over-parameterization of the student wrt. the teacher. For instance, if the student has more
modules available than there are tasks in the training distribution, it could use one module per
task, fitting all of them perfectly but remaining ignorant of their shared structure.

3.1 MULTI-TASK TEACHER-STUDENT SETUP

In a standard teacher-student setting, a student network is trained to match the output of a teacher
given inputs x ∈ Rn drawn from some distribution Px. Here, we consider a multi-task counterpart
to this setting. In addition to the input, we sample a hidden task latent variable z from some distri-
bution Pz independently from x. In the following, we denote all quantities relating to the student
with a hat, e.g. Θ̂, and those relating to the teacher without.

For both the teacher and student architecture we use task-conditioned hypernetworks (c.f. Fig-
ure 1A). Specifically, we consider a 2-layer multi-layer perceptron (MLP) with h hidden units and
one output unit, for which the first layer weights are generated by a linear hypernetwork as

f(x;a,Θ, z) = a⊤ψ(W (Θ, z)x) (3)

where ψ is an activation function, a is the task-shared readout vector, and Θ = (Θ(m))1≤m≤M are
the parameter modules parameterizing the hypernetwork. The first layer weight W is generated
by linearly combining the (Θ(m))1≤m≤M with the task latent variable z = (z(1)..z(M))⊤, i.e.
W (Θ, z) =

∑M
m z(m)Θ(m). The teacher then produces task-conditioned demonstrations as in

Equation 3. The task thus has a compositional structure as defined in 2.

The student is also implemented as a linear hypernetwork with the hidden dimension potentially
different from the teacher. Crucially, the student only has access to the input x but does not observe
the task latent variable z. We allow the student however to infer a task-specific parameter ẑ of
dimension M̂ for each task given contextual information which will then condition the forward
pass. We estimate ẑ such that it minimizes the objective detailed in Section 2, given demonstrations
from the teacher. The student then optimizes the multi-task objective stated in Equation 2, where
given θ = (Θ̂, â), and ϕz = ẑ the task loss is defined as

L(ϕz, θ;Dz) =
1

2
Ex

[
∥f(x; â, Θ̂, ẑ)− f(x;a,Θ, z)∥2

]
(4)

3.2 IDENTIFICATION & COMPOSITIONAL GENERALIZATION

We will now show under what conditions a student, that perfectly fits the teacher on the training
distribution, recovers the teacher’s modules and achieves compositional generalization.

Let us first study a motivating example for a teacher with M = 6 modules illustrated in Figure 2A
to build some intuition. For that purpose we consider task families associated with binary masks
that indicate which sparse subset of K = 2 modules is present. For instance, the binary mask
b1 = (1, 1, 0, 0, 0, 0)⊤ indicates that Z1 is a task family consisting of latent vectors for which
exactly the first and second entry are non-zero, e.g. z = (0.6, 0.7, 0, 0, 0, 0)⊤.

We now consider the case where during training the student observes tasks from four different
task families specified by the binary masks b1 = (1, 1, 0, 0, 0, 0)⊤, b2 = (0, 1, 1, 0, 0, 0)⊤, b3 =
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Figure 2: A Visualization of connected and disconnected task distributions in a teacher withM = 6,
K = 2. B Module alignment between the student and teacher is high for both continuous and
discrete task distributions with connected but not disconnected support. C Module alignment is
sensitive to over-parameterization. Numbers denote the factor by which the student dimension is
larger than the teacher. Error bars in B,C denote the standard error of the mean over 3 seeds.

(0, 0, 0, 1, 1, 0)⊤, b4 = (0, 0, 0, 0, 1, 1)⊤. For each task, we assume that the student sees an infinite
number of samples covering the whole input space and learns to perfectly fit the teacher. After train-
ing we ask the student to solve a new task specified by the task latent code z? = (1, 0, 0, 0, 0, 1)⊤.
Given that it has seen all modules present in this new task, we might expect it to be able to solve
it. It turns out that this is not the case since the neuron permutations between modules indexed
by {1, 2, 3} and {4, 5, 6} are likely inconsistent as it has never encountered a task that connects
these two subsets of modules (also see Appendix A.2.2 for a more detailed explanation). We can
avoid this pathology by adding a fifth task family to our set of training tasks given by the binary
mask b5 = (0, 0, 1, 1, 0, 0)⊤. As we will show now, this leads to compositional generalization and
the student will perfectly solve any task including z?. In fact, the student modules will be a linear
combination of the teacher modules which we refer to as linear identification.

Let us now consider a general set of task families Z = {Z1, Z2, . . . }where each task family Zk ∈ Z
is a non-empty set of RM with an associated binary mask bk. In the following we require that
span(Zk) = {v⊙ bk | v ∈ RM}, where span(A) denotes the set of linear combinations of elements
of A. With this definition at hand we can formulate sufficient conditions on the training distribution
Pz over task latent variables whose support contains the union of all task families Z.
Definition 3.1 (Compositional support). Pz has compositional support if all dimensions of RM

are covered by at least one of the binary masks bk, i.e.
∑|Z|

k bk has no entry that is 0.

Intuitively having compositional support simply ensures that all modules have been encountered at
least once. As we have seen in the example above this is not enough, leading to our second condition.
Definition 3.2 (Connected support). Pz has connected support if there exists a path between any
two task families, where two task families Zk, Zl are said to be connected if their associated binary
masks share a non-zero element, i.e. bk ∧ bl ̸= 0.

With these two definitions we can now state a simplified version of our main result showing that a
perfect student will generalize compositionally. Formal versions of the following theorems as well
as their proofs can be found in Appendix A.2.3 and A.2.1, shown for both ReLU as well as a general
class of smooth activation functions.
Theorem 1 (Compositional generalization, informal). Assuming that Pz has compositional and
connected support, Px has full support in the input space and the student dimensions match that of
the teacher, i.e. M̂ = M ≤ n, ĥ = h, then under an additional smoothness condition on Pz and
non-degeneracy of (Θ,a), we have that

Ez∼Pz

[
min
ϕz

L(ϕz, Θ̂;Dz)

]
= 0 =⇒ min

ϕz

L(ϕz, Θ̂;Dz) = 0 ∀z ∈ RM ,

i.e. if the student optimizes θ to fit the teacher on Pz , it achieves compositional generalization.

The assumptions of compositional, connected support and h = ĥ are not only sufficient, but also
necessary conditions for the implication to hold (all other things being equal), since we can construct
counterexamples, detailed in Appendix A.2.2, when one of the conditions is violated. Furthermore,
achieving compositional generalization under the above assumptions is equivalent to linear identi-
fication of the teacher modules in the student. For any hidden neuron index i, we denote by Θi the
slice of Θ of dimension n×M which maps the task latent variable z to wi, i.e. wi = Θiz.
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Theorem 2 (Linear identification, informal). Assuming Px has full support in the input space,
M̂ =M ≤ n, ĥ = h, non-degeneracy of Θ and a, then minϕz L(ϕz, Θ̂;Dz) = 0 ∀z is equivalent
to the existence of an invertible matrix F , a permutation σ and a sign flip ϵ ∈ {−1, 1}h such that

Θσ(i) = ϵiΘ̂iF ∀i ∈ [1, h]

i.e. the learned student modules are a linear combination of the teacher modules.

The linear identification in fact holds in the general setting of ĥ ≥ h, c.f. Appendix A.2.1. So far we
have allowed for continuous task families that contain linear combinations of their constituent mod-
ules. However, in many interesting settings modules are discrete meaning the task latent variables
can only take a finite set of values. Appendix A.2.3 shows that we can capture this case since if the
student achieves zero loss on a finite number, N = dim(span(Zk)) + 1, of i.i.d. samples of tasks
for each Zk from Pz it will generalize compositionally with a probability of one.

3.3 EMPIRICAL VERIFICATION IN THE THEORETICAL SETTING

We empirically verify our theoretical findings by randomly initializing a teacher model following
Section 3.1, and measuring the degree of identification achieved by the student network after training
until convergence on various task distributions. See Appendix C.1 for details on the experiments. We
measure module alignment as mini(maxj |s(Θi, Θ̂jF )|) where s is the cosine similarity function,
and F is obtained by regressing ẑ on z. A module alignment of 1 implies linear identification.

Identification requires connected support. We construct task distributions with both connected
and disconnected support. Figure 2B shows that the student parameter modules have a high align-
ment both for a continuous and discrete task distribution when the task support is connected. Dis-
connecting the task support leads to a noticeable degradation.

Identification is sensitive to over-parameterization. Given a task distribution with compositional
and connected support, we investigate the effect of over-parameterization on identification. Specifi-
cally, we vary the ratio of the number of hidden units ĥ and modules M̂ of the student with respect
to the teacher. While Theorem 1 holds only for ĥ = h andM = M̂ , optimizing the loss well enough
typically requires slight over-parameterization. Figure 2C shows that a slight over-parameterization
is indeed beneficial for linear identification. Yet, beyond ĥ = 8h and M̂ = 2M , the identifica-
tion noticeably degrades for discrete training tasks and cannot be alleviated by adjusting the weight
decay (c.f. Table A1 in Appendix B.1). For a continuous task distribution, over-parameterization
appears unproblematic, indicating that the learning dynamics introduce a beneficial inductive bias.

4 EXPERIMENTS

We now empirically investigate if modular architectures realized as hypernetworks can composition-
ally generalize when meta-learning from finite data, assess whether a highly expressive monolithic
architecture can match this performance, and determine if abstract latent space compositionality can
be discovered despite an unknown functional mapping to the task data. We further verify that both
theoretically identified conditions - compositional and connected task support - are important for
compositional generalization beyond the teacher-student setting.

4.1 HYPERTEACHER

We generalize the teacher-student setup from Section 3.1 to a teacher hypernetwork that modularly
parameterizes multiple layers of a target neural network and only show a limited amount of data to
the student per task. To more faithfully reflect the symbolic nature of many real-world compositional
tasks, each task is a sparse and discrete combination of modules as exemplified in Figure 3A. See
Appendix C.2 for more details. As introduced in Section 2, we contrast monolithic architectures -
namely ANIL and MAML - to modular architectures: the nonlinear and linear hypernetwork, see
Appendix D for a detailed description of all models. The nonlinear hypernetwork specifically allows
us to investigate the effects of architectural mismatch with the teacher network.

Modular but not monolithic architectures compositionally generalize. To test the ability for
compositional generalization, we hold out a fraction of the possible teacher module combinations
during training. Only if we ensure that all teacher modules part of the out-of-distribution (OOD)
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Figure 3: A In the hyperteacher we pick between 1 to K of the M teacher modules, adding them in
parameter space to create a task. B ANIL and MAML fail to generalize to OOD tasks regardless of
the support of the training distribution, while hypernetworks achieve good OOD accuracy only when
the task support is compositional. C+D When the task distribution is compositional and connected
the teacher modules can be linearly decoded from the student task embeddings. E Hypernetworks
have high OOD accuracy for K > 1 but low OOD accuracy for K = 1. F OOD performance
of hypernetworks is sensitive to over-parameterization in both the hidden dimension and module
dimension. Error bars in B-F denote the standard error of the mean over 3 seeds.

set have been encountered individually as part of another combination during training does our
training distribution have compositional support. Figure 3B shows that both the nonlinear and linear
hypernetwork achieve high OOD accuracy while ANIL and MAML fail to do so. When the training
support is non-compositional the performance of the hypernetworks drops below that of ANIL and
MAML. Figure 3E demonstrates that this holds as long as the number of modules chosen for task
combinations is K > 1. In the case where exactly one module is chosen per task, K = 1, the
condition of connected support is not satisfied and as predicted by our theory, both the nonlinear
and linear hypernetwork perform poorly in terms of compositional generalization despite the task
support being compositional.

Modules can be linearly decoded in compositional solutions given connected task support.
Given our theoretical result, we expect that a linear hypernetwork that achieves high OOD accuracy
to recover the module parameters of the teacher up to linear transformation. To test this we train a
linear decoder to predict the ground truth task latent variables of a task given the learned embeddings
of the student on a validation set and then test linear decoding performance on the OOD set. Shown
in Figure 3C,D, we find that in line with the theory, we get high decodability with an R2 score
close to one in the case where the task support is compositional and connected. In the case where
the support is non-compositional, the decoding performance is reduced reflecting the fact that there
was no opportunity to learn about one of the modules. Despite having seen all modules during
training, performance further drops significantly when the task support is disconnected as predicted
by our theory. Surprisingly, these results extend to the nonlinear hypernetwork where there is an
architectural mismatch between the teacher and the student and there is no prior reason for the
relationship between learned embeddings and ground-truth task latent variables to be linear.

Compositional generalization is sensitive to over-parameterization. The theory in the discrete
setting requires the student to have the same hidden and module dimension as the teacher. We
test how sensitive the ability for compositional generalization in terms of OOD performance is
to over-parameterization on these two axes. In Figure 3F, we observe that while a certain over-
parameterization is necessary for the optimization to succeed, performance starts to decrease for
larger over-parameterization.

Meta-learning overfits to the number of modules entering the composition. Despite linear iden-
tification as detailed above, we further observe that learners overfit to the particular number K of
modules combined within a task, with OOD accuracy decreasing for K larger than what was en-
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Figure 4: A In the compositional preference grid world the agent has modular preferences over
colors and gets a reward corresponding to the current preference for the color of an object. B Dis-
connecting the task support increases the OOD loss of hypernetworks. C Hypernetworks achieve
better OOD loss than ANIL and MAML when the task support is compositional. D In the composi-
tional goal grid world an agent has to walk to a target object and perform the correct target action.
Goals are a composition of the maze, target object, target action and goal quadrant. E Hypernet-
works achieve better OOD accuracy wrt to the optimal policy than ANIL and MAML. F When
holding out one of the goal quadrants the OOD accuracy decreases for hypernetworks more strongly
than for ANIL and MAML. Error bars in B,C,F denote the standard error of the mean over 3 seeds.

countered during training, e.g. see Table A6. Preliminary experiments suggest that this can be
partially alleviated by allowing for more gradient steps to perform task inference during evaluation,
but does not present a full remedy of the issue.

4.2 COMPOSITIONAL PREFERENCES

In the teacher-student setup we ensure by construction that the compositional representation of the
data generating process is contained in the class of compositions the student can efficiently express.
We now consider a setting where an agent has compositional preferences shared across tasks but the
functional mapping to its action-value function for each specific task is unknown. In particular, we
study the compositional preference grid world inspired by Barreto et al. (2020) where an agent can
obtain rewards by collecting objects with different colors. For each task, up to K = 3 out of M = 8
preference modules are sampled and summed to obtain a hidden preference vector which specifies
the reward the agent obtains when moving to an object of a specific color (see Figure 4A). We test the
ability for compositional generalization by presenting the agent with tasks of unseen combinations
of preference modules. The agent then has to infer the current preferences from observing optimal
trajectories and is evaluated to predict the action-value function for a new environment configuration
where agent and object locations are resampled. For more details on the task see Appendix C.3.

Modular architectures learn composable action-value functions. Figure 4C demonstrates that
the linear and nonlinear hypernetwork achieve a lower mean-squared error loss predicting action-
values on OOD tasks compared to ANIL and MAML when the task support is compositional. The
OOD loss significantly increases when one of the preference vectors is held-out from the training
set, resulting in non-compositional support.

Encountering preference vectors in disjoint clusters interferes with compositional generaliza-
tion. We can emulate disconnected task support similar to our definition in the teacher-student
setting by constructing the training tasks to contain subsets of preference vectors in disconnected
clusters. We observe that this intervention has a noticeable effect on the OOD loss achieved by
both the linear and nonlinear hypernetwork, as shown in Figure 4B, despite the number of observed
combinations being comparable for the connected and disconnected support.
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4.3 COMPOSITIONAL GOALS

Many real-world tasks have compositional goals raising the question whether a modular architecture
can discover behavior policies that decompose according to the latent goal structure. To this end, we
consider the compositional goal grid world depicted in Figure 4D where an agent has to navigate to
a target object to employ a specific target action. The goals have compositional structure and we can
test for compositional generalization by presenting novel compositions of goals. A goal is specified
by four factors: maze layout, target object, target interaction and goal quadrant. For example a
possible goal would be “In maze 1, perform interaction 3 on the purple object in quadrant 4”. We
measure the accuracy of the agent with respect to the optimal policy. For a more detailed task
description see Appendix C.4.

Modular architectures learn composable behavior policies. Figure 4E demonstrates that both the
linear and nonlinear hypernetwork achieve higher OOD accuracy of predicting the optimal behavior
policy on held-out goal compositions than ANIL and MAML.

Modular architectures outperform monolithic ones by leveraging compositional structure. To
construct non-compositional support in this task, we hold-out one of the goal quadrants from the
training distribution. Figure 4F shows that this intervention has a more pronounced effect on the
linear and nonlinear hypernetwork than on ANIL and MAML, indicating that generalization to OOD
tasks is due to the hypernetworks leveraging the compositional structure of the task.

5 RELATED WORK & DISCUSSION

The findings we present here are grounded in a theoretical teacher-student analysis (Gardner &
Derrida, 1989) building on recent results that characterize the global minima of the loss of MLPs
in the infinite data limit (Tian, 2020; Simsek et al., 2021). We extend the classical teacher-student
setting to the multi-task setting where in addition to matching the teacher, the student needs to
infer a hidden task latent variable and we instantiate the teacher as a linear hypernetwork to create
compositional task structure. We show that parameter identification is both a necessary and sufficient
condition for compositional generalization and we prove a new identifiability result that requires the
task support of the training distribution to be compositional and connected - two conditions we
empirically verify to be crucial for compositional generalization.

Our results are complementary to Lachapelle et al. (2023) demonstrating that L1-regularization en-
ables disentangled identification in multi-task learning of sparse, linear feature combinations with
a monolithic architecture. More generally, there has been widespread interest in assessing compo-
sitional generalization (Lake & Baroni, 2018; Ruis et al., 2020; Hupkes et al., 2020) as a crucial
shortcoming of deep learning (Loula et al., 2018; Dessı̀ & Baroni, 2019; Keysers et al., 2020) across
various subfields (Battaglia et al., 2018; Atzmon et al., 2020; Montero et al., 2021; Liu et al., 2023).
While with the advent of pretrained large language models, compositional abilities have seemingly
come into reach (Zhou et al., 2023; Orhan, 2022; Furrer et al., 2021; Csordás et al., 2021) and many
specialized architectures (Russin et al., 2019; Li et al., 2019; Gordon et al., 2020; Andreas, 2020;
Liu et al., 2020; Lake, 2019; Nye et al., 2020; Kaiser & Sutskever, 2016) are outperformed by pre-
trained large language models (Furrer et al., 2021), it remains an open question whether the ability
for compositional generalization extends beyond the training distribution (Srivastava et al., 2023;
Press et al., 2023; Dziri et al., 2023).

Different from prior work we put particular emphasis on the multi-task setting and compositionality
in weight space - a common and powerful motif in deep learning (Kumar & Daume III, 2012; Ru-
volo & Eaton, 2013; Perez et al., 2018; Jayakumar et al., 2020). We show that linearly combining
parameters can capture nonlinear latent structure raising an important question for future research on
the interpretability of the resulting modules. We derive our theory in the infinite data regime while
in practice we resort to meta-learning from finite samples. Indeed the sample complexity appears
to scale unfavorably as the number of teacher modules increases (c.f. Figure A3). Running meta-
learning on this scale is computationally expensive and future work would ideally amortize the infer-
ence procedure when scaling to larger problem instances (Zhmoginov et al., 2022). Moreover, while
our identification result in the multi-task teacher-student setting indicates that over-parameterization
of the student can be detrimental for compositional generalization, the situation is less clear outside
the teacher-student setting necessitating further investigation. Finally, we note that we characterized
the solutions of the modular teacher-student setting at equilibrium in the infinite data limit. Even
when the modular solution constitutes a global optimum, we cannot provide any guarantees that
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it can be reached with gradient-based learning. Jarvis et al. (2023) have made an important first
step towards analyzing the learning dynamics of modular and monolithic architectures using deep
linear networks in synthetic, linearly-separable datasets. Understanding and analyzing the learning
dynamics of the full modular teacher-student setting, as has previously been done for more restricted
architectures (Seung et al., 1992; Saad & Solla, 1995; Goldt et al., 2019), remains an important open
question, the answer to which might help elucidate why even modular architectures often collapse
to monolithic solutions.
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Frieda Rong, Gaurav Mishra, Genta Indra Winata, Gerard de Melo, Germán Kruszewski, Gi-
ambattista Parascandolo, Giorgio Mariani, Gloria Xinyue Wang, Gonzalo Jaimovitch-Lopez,
Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh Ha-
jishirzi, Harsh Mehta, Hayden Bogar, Henry Francis Anthony Shevlin, Hinrich Schuetze, Hi-
romu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack
Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, James B. Si-
mon, James Koppel, James Zheng, James Zou, Jan Kocon, Jana Thompson, Janelle Wingfield,
Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosinski,
Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse Engel, Je-
sujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden, John Miller,
John U. Balis, Jonathan Batchelder, Jonathan Berant, Jörg Frohberg, Jos Rozen, Jose Hernandez-
Orallo, Joseph Boudeman, Joseph Guerr, Joseph Jones, Joshua B. Tenenbaum, Joshua S. Rule,
Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakrishnan, Katerina
Ignatyeva, Katja Markert, Kaustubh Dhole, Kevin Gimpel, Kevin Omondi, Kory Wallace Math-
ewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle Richardson,
Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-Ochando, Louis-
Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt, Luheng He, Luis
Oliveros-Colón, Luke Metz, Lütfi Kerem Senel, Maarten Bosma, Maarten Sap, Maartje Ter Ho-
eve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco Marelli, Marco
Maru, Maria Jose Ramirez-Quintana, Marie Tolkiehn, Mario Giulianelli, Martha Lewis, Martin

16

https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://proceedings.mlr.press/v139/simsek21a.html
https://proceedings.mlr.press/v139/simsek21a.html


Preprint

Potthast, Matthew L. Leavitt, Matthias Hagen, Mátyás Schubert, Medina Orduna Baitemirova,
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mension. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 9470–
9480. PMLR, July 2020. URL https://proceedings.mlr.press/v119/tian20a.
html.

Ivan I. Vankov and Jeffrey S. Bowers. Training neural networks to encode symbols enables com-
binatorial generalization. Philosophical Transactions of the Royal Society B: Biological Sci-
ences, 375(1791):20190309, February 2020. ISSN 0962-8436, 1471-2970. doi: 10.1098/rstb.
2019.0309. URL https://royalsocietypublishing.org/doi/10.1098/rstb.
2019.0309.
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A THEORETICAL RESULT

Before presenting the theoretical result for the multi-task teacher-student setting, we first focus on
the standard teacher student setting, which can be seen as a special case of our multi-task setting
where there exists only a single task.

We will use the notation introduced in Section 3.1 to describe a network, in particular for any hidden
neuron index i, we denote by wi the i-th row of the generated weight W (Θ, z), Θi the slice of Θ
of dimension n ×M which maps the task latent variable z to wi, i.e. wi = Θiz, and ai the i-th
column of a.

A.1 SINGLE TASK PARAMETER IDENTIFICATION FOR RELU MLP

This section presents rigidity results that allows us, under the right conditions, to identify the learned
parameters of a student feed forward network learning to imitate the output of a teacher. Here the
student may have the same or even a wider architecture. To our knowledge this is the first such
results for ReLU two-layer MLP.

There are clearly many functionally equivalent ways to implement a neural network. In a first step
we thus aim at characterizing the exact set of neural networks that are functionally equivalent to to a
given teacher network. In order to get a nice characterization we require the teacher to be minimal.
E.g., if the read-out value of a hidden unit is zero, this unit has no influence on the output and we
can delete it. Formally, we assume that the teacher is irreducible:

Definition A.1. Irreducibility: The weights (W ,a) of a two-layer MLP f are called irreducible
when there exists no two-layer MLP f̂ with strictly less hidden units such that they are functionally
equivalent, i.e. ∀x ∈ Rn, f(x) = f̂(x).

Clearly, we have the following necessary conditions for irreducibility:

• no output weight ak is 0

• no input weight vector wk is 0

• no two input weight vectors wk,wl are identical

For a special class of smooth activation functions, ψ ∈ C∞, and ψ(n)(0) ̸= 0 for infinitely many
even and odd values of n, Simsek et al. (2021) show that the above conditions are sufficient for a
network to be irreducible.

For the ReLU nonlinearity, the above conditions are no longer sufficient for a teacher to be irre-
ducible. As an illustration, if a pair of weights wk,wl are positively colinear, then the 2 corre-
sponding hidden neurons can be fused into a single hidden neuron without functionally changing
the network. See section A.1.2 for more details.

A simple sufficient condition for the irreducibility of a ReLU MLP is that the teacher has no two
input weights wk that are colinear, and no output weight ak that is 0. While this is not a neces-
sary condition, we will restrict our identification results to such teacher networks for simplicity, cf.
Section A.1.2 for the general case.

A.1.1 IDENTIFICATION WITH RELU MLP

We now state the main theorem of this subsection. We will first treat the theorem for the special case
that teacher and student network have the same number of hidden units, i.e. ĥ = h. Subsequently,
we will then state the theorem for ĥ ≥ h and illustrate how to extend the proof. From here on,
whenever we talk about a measure, we refer to the Lebesgue measure.

Theorem 3. Assume a teacher and student two-layer network parameterized by resp. (W ,a) and
(Ŵ , â), of hidden dimensions h = ĥ and a single output unit such that

Ex∼Px [L(x)] = 0, (5)
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where

L(x) =
1

2
∥a⊤ψ(Wx)− â⊤ψ(Ŵx)∥2 (6)

and ψ is the ReLU nonlinearity. If

• Px has full support in the input space and

• (W ,a) is such that

– no output weight ak is 0
– no two input weights wk,wl are colinear

then there exists a partition S1,S2 of [1..h] and a permutation σ of the neurons in the hidden layer
such that we have

∀i, âσ(i)ai > 0, (7)

∀i ∈ S1, âσ(i)ŵσ(i) = aiwi, (8)

∀i ∈ S2, âσ(i)ŵσ(i) = −aiwi, (9)∑
i

aiwi =
∑
i

âiŵi. (10)

Moreover, any two-layer teacher and student networks that satisfy equation 7-equation 10, also
satisfies equation 5.

The idea of the proof consists in noticing that 0 loss means that a ReLU MLP constructed by concate-
nating the teacher and student hidden neurons need to be functionally 0 everywhere. By grouping
together the teacher and student weight vectors that are colinear with each other, we then show that
the sum of each of hidden neurons belonging to the same group need to be 0 or a linear function in
x. Finally, because no two teacher weight vectors are colinear, we show that necessarily a student
weight needs to be colinear with each teacher weight. The permutation σ consists in this mapping,
and the partition S1,S2 in respectively student weights that are positively, resp. negatively colinear
with the teacher.

We now formally prove the claim.

Proof. We collect in W all the row vectors w of the matrices W from the teacher and student
network. By using cw to denote the corresponding weight from a in the teacher network resp.
minus one times the corresponding weight in the student network, we can rewrite the fact that we
are at zero loss as ∑

w∈W
cwψ(w

⊤x) = 0 for all x ∈ Rn (11)

To now deduce some consequences from this equation we introduce some notation. For every w ∈
W we denote by Cw the set of all vectors inW that are collinear with w (including w itself) and with
Nw :=W \ Cw all vectors inW that are not collinear with w. Furthermore we use Cw = C+w ∪ C−w
to denote those vectors that are positively resp. negatively collinear with w.

Consider some arbitrary w′ ∈ W . By definition of Cw′ andNw′ we can find a vector x0 ∈ Rn such
that

w⊤x0 = 0 for all w ∈ Cw′ and w⊤x0 ̸= 0 for all w ∈ Nw′

and an open ball B around x0 such that we have for all w ∈ Nw′ : w⊤x ̸= 0 for all x ∈ B. Using
1E to denote the indicator for the event E , i.e. 1E ≡ 1 if E holds and 1E ≡ 0 otherwise, we thus
have

ψ(w⊤x) = 1w⊤x0>0 ·wTx for all x ∈ B,w ∈ Nw′ .

As w⊤x0 = 0 for w ∈ Cw′ and B is a ball around x0 we know that both B+ := {x ∈ B : w′⊤x >
0} and B− := {x ∈ B : w′⊤x < 0} are open sets in Rn. By definition of the sets C+w′ and C−w′ we
have

ψ(w⊤x) =

{
w⊤x if w ∈ C+w′

0 if w ∈ C−w′
for all x ∈ B+
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resp.

ψ(w⊤x) =

{
w⊤x if w ∈ C−w′

0 if w ∈ C+w′
for all x ∈ B−

From equation 11 we thus get that

0 = (
∑

w∈Nw′

cw1w⊤x0>0 ·w +
∑

w∈C+

w′

cww)⊤x for all x ∈ B+

and
0 = (

∑
w∈Nw′

cw1w⊤x0>0 ·w +
∑

w∈C−
w′

cww)⊤x for all x ∈ B−

As both B+ and B− are open sets and we know that for any open set O we have that v⊤x = 0 for
all x ∈ O implies v = 0 we thus deduce that∑

w∈C+

w′

cww =
∑

w∈C−
w′

cww for all w′ ∈ W . (12)

We now interpret this equation in terms of our teacher-student setting. Recall that we assumed that
no two rows in the teacher network are collinear and that in the teacher network no weight in a
is zero. That is, for any w′ ∈ W from the teacher network C+w′ ∪ C−w′ needs to contain at least
one vector from the student network. As teacher and student network have the same size, this thus
implies the existence of a permutation σ ∈ Sh such that for all weight vectors wi ∈ W from the
teacher network there needs to exist a weight vector ŵσ(i) from the student network so that wi and
ŵσ(i) are collinear. Denote by S1 the indices i such that ŵσ(i) ∈ C+wi

and by S2 = [1..h] \ S1 the
ones such that ŵσ(i) ∈ C−wi

. Observe that this implies that we can rewrite equation 12 as
aiwi = aσ(i)wσ(i) ∀i ∈ S1 and aiwi = −aσ(i)wσ(i) ∀i ∈ S2.

Here we used that we defined cw for weights from the student network as minus one times the
corresponding weight from a. This shows equation 8 and equation 9. equation 7 also follows
immediately from the definition of S1 and S2.

To prove equation 10 and the moreover-part of the theorem, we show that if equation 7 - equation 9
hold, then equation 5 and equation 10 are equivalent. As σ is a permutation we can rewrite equation 5
as ∑

i

aiwix · 1wix>0 =
∑
i

âσ(i)ŵσ(i)x · 1ŵσ(i)x>0 ∀x ∈ Rm (13)

and equation 10 as∑
i

aiwix·(1wix>0+1wix<0) =
∑
i

âσ(i)ŵσ(i)x·(1ŵσ(i)x>0+1ŵσ(i)x<0) ∀x ∈ Rm. (14)

For indices i ∈ S1 we have wix > 0 if and only if ŵσ(i)x > 0, thus equation 8 implies that
the terms for i and σ(i) contribute identical values to the sums both in equation 13 as well as in
equation 14. We can thus concentrate on the values i ∈ S2. For these we have aiwix > 0 implies
âσ(i)ŵσ(i)x < 0 and vice versa. Using this and equation 9 on both sides we see that∑

i∈S2

aiwix · 1wix>0 =
∑
i∈S2

âσ(i)ŵσ(i)x · 1ŵσ(i)x>0

is equivalent to
−

∑
i∈S2

âσ(i)ŵσ(i)x · 1ŵσ(i)x<0 = −
∑
i∈S2

aiwix · 1wix<0.

The equivalence of equation 13 and equation 14 follows.

If the student is larger than the teacher, ie. ĥ > h, then there is more flexibility: instead of having a
mapping from teacher hidden neuron i to a single student hidden neuron σ(i), each teacher neuron
i now maps to a set of student neurons. In addition, this set partitions into positively colinear and
negatively colinear subsets, resp. S1(i),S2(i). Furthermore, we can have additional student neurons
that do not correspond to any teacher neurons, provided they cancel out eventually. The sets S0 as
well as S ′1, S′

2 in the following theorem correspond to such neurons.

From here on, we refer to ⊕ as the operation that concatenates lists or vectors.
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Theorem 4. Under the assumptions from Theorem 4, but with ĥ ≥ h, there exists a partition
S = (S1(i),S2(i))i∈[1..h] ⊕ (S ′1(i),S ′2(i))i∈[1..h′] ⊕ (S0) of [1..ĥ] for some h′such that we have

∀i ∈ [1..h], ∀j ∈ S1(i),∃α > 0 : ŵj = αwi, (15)
∀j ∈ S2(i),∃α < 0 : ŵj = αwi, (16)

aiwi =
∑

j∈S1(i)

âjŵj −
∑

j∈S2(i)

âjŵj , (17)

∀i ∈ [1..h′], ∀(j, k) ∈ S ′1(i)× S ′1(i) ∪ S ′2(i)× S ′2(i),∃α > 0 : ŵj = αŵk, (18)

∀(j, k) ∈ S ′1(i)× S ′2(i),∃α < 0 : ŵj = αŵk, (19)

0 =
∑

j∈S′
1(i)

âjŵj −
∑

j∈S′
2(i)

âjŵj , (20)

∀j ∈ S0, 0 = âjŵj , (21)∑
i

aiwi =
∑
i

âiŵi. (22)

Moreover, any two-layer teacher and student networks that satisfy equation 15-equation 22, also
satisfies equation 5.

Proof. The proof is identical up to equation 12.

Firstly, we denote by S0 the indices of student vectors such that âŵ = 0. They correspond to student
neurons that have 0 activities everywhere. This gives equation 21. Without loss of generality, we
will exclude all student vectors in S0 fromW , and redefine C, etc accordingly.

Secondly, recall that we assumed that no two rows in the teacher network are colinear and that in
the teacher network no weight in a is zero. That is, for any w′ ∈ W from the teacher network
C+w′ ∪ C−w′ needs to contain at least one vector from the student network. For all teacher vector wi

where i ∈ [1..h] we denote by resp. S1(i),S2(i) the subsets of [1..ĥ] corresponding to indices of
student vectors that belong to C+wi

resp. C−wi
. Observe that we can then rewrite equation 12 as

aiwi =
∑

j∈S1(i)

âjŵj −
∑

j∈S2(i)

âjŵj ∀i ∈ [1..h]

Here we used that we defined cw for weights from the student network as minus one times the
corresponding weight from a. This shows equation 17. equation 15 and equation 16 also follows
immediately from the definition of S1 and S2.

Finally, consider the student vectorsW ′ that have not been assigned to one of the sets S1(i), S2(i)
or S0. We fix some (ŵi)i∈[1..h′] such that {Cŵi

}i∈[1..h′] forms a partition of this set. We then
partition each Cŵi

into C+ŵi
, C−ŵi

and denote by S ′1(i),S ′2(i) the set containing the indices of the
student vectors belonging to resp. C+ŵi

, C−ŵi
. Then we can rewrite equation 12 as∑

j∈S′
1(i)

âjŵj =
∑

j∈S′
2(i)

âjŵj ∀i ∈ [1..h′]

This shows equation 20. equation 18 and equation 19 also follows immediately from the definition
of S ′1 and S ′2.

Clearly, S = (S1(i),S2(i))i∈[1..h] ⊕ (S ′1(i),S ′2(i))i∈[1..h′] ⊕ (S0) form a partition of [1..ĥ].

To prove equation 22 and the moreover-part of the theorem, we show that if equation 15 - equation 21
hold, then equation 5 and equation 22 are equivalent. We can rewrite equation 5 as∑

i∈[1..h]

aiwix · 1wix>0 =
∑

i∈[1..ĥ]

âiŵix · 1ŵix>0 ∀x ∈ Rm (23)
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which gives∑
i∈[1..h]

[ ∑
j∈S1(i)

âjŵj −
∑

j∈S2(i)

âjŵj

]
x · 1wix>0 (24)

=
∑

i∈[1..h]

[ ∑
j∈S1(i)

âjŵj · 1ŵjx>0 +
∑

j∈S2(i)

âjŵj · 1ŵjx>0

]
x (25)

+
∑

i∈[1..h′]

[ ∑
j∈S′

1(i)

âjŵj · 1ŵjx>0 +
∑

j∈S′
2(i)

âjŵj · 1ŵjx>0

]
x ∀x ∈ Rm. (26)

which simpifies into

0 =
∑

i∈[1..h]

[ ∑
j∈S2(i)

âjŵj · 1−ŵjx>0 +
∑

j∈S2(i)

âjŵj · 1ŵjx>0

]
x (27)

+
∑

i∈[1..h′]

[ ∑
j∈S′

2(i)

âjŵj · 1−ŵjx>0 +
∑

j∈S′
2(i)

âjŵj · 1ŵjx>0

]
x ∀x ∈ Rm. (28)

Noticing that 1wx>0 + 1−wx>0 = 1 for almost any x and for any w ̸= 0, we get

0 =
∑

i∈[1..h]

∑
j∈S2(i)

âjŵjx+
∑

i∈[1..h′]

∑
j∈S′

2(i)

âjŵjx (29)

for almost any x, and thus

0 =
∑

i∈[1..h]

∑
j∈S2(i)

âjŵj +
∑

i∈[1..h′]

∑
j∈S′

2(i)

âjŵj (30)

the equivalence of equation 5 and equation 22 follows by adding equation 17 ,equation 20 ,equa-
tion 21 over all indices and using equation 30.

A.1.2 IRREDUCIBILITY CONDITION FOR RELU NONLINEARITY

Here, we comment on the formal sufficient and necessary conditions for a ReLU two-layer MLP to
be irreducible. As it is not relevant for the remainder of the appendix, it can be skipped.

Consider a two-layer ReLU MLP, f(x) = a⊤ψ(Wx) =
∑

k akψ(w
⊤
k x).

Firstly, if a pair of weights wk,wl are positively colinear, then they can be fused into one hidden
unit. Thus, a necessary condition for irreducibility is that no two weights are positively colinear.

Secondly, if some pairs of weights are negatively colinear, we can decompose the corresponding
function into the sum of a new hidden neuron and a linear function, i.e. for any (wk,wl, ak, al)
such that there exists α > 0 : wl = −αwk, for any x,

akψ(w
⊤
k x) + alψ(w

⊤
l x) = akψ(w

⊤
k x) + alψ(−αw⊤

k x) + αalw
⊤
k x− αalw⊤

k x (31)

= akψ(w
⊤
k x)− alψ(αw⊤

k x)− αalw⊤
k x (32)

= (ak − αal)ψ(w⊤
k x)− αalw⊤

k x (33)
(34)

where we obtain the second line by noticing that for any w,x, ψ(w⊤x)−w⊤x = −ψ(−w⊤x).

Thus, any two-layer ReLU MLP can be transformed into a the sum of a ReLU MLP with no pairs
of weight being colinear, and a linear function. Since a linear function can be implemented by two
hidden units with negatively colinear weights, any irreducible network should have at most a single
pair of negatively colinear input weight.

Thirdly, the obtained linear function can further be absorbed by the ReLU hidden neurons if, by
denoting w the weight of the linear function, there exists a subset of hidden neurons I such that
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w = −
∑
i∈I

aiwi (35)

since in that case, we have, for any x,∑
i∈I

aiψ(w
⊤
i x) +w⊤x =

∑
i∈I

aiψ(w
⊤
i x)−

∑
i∈I

aiw
⊤
i x (36)

=
∑
i∈I
−aiψ(−w⊤

i x) (37)

Thus, for f to be irreducible, the following necessary conditions need to be fulfilled:

• There exists no output weight ak that is 0

• There exists no pair of input weights that are positively colinear

• There exists not more than one pair of input weights that are negatively colinear

• If a pair of negatively colinear input weight exists, by denoting k, l the corresponding hid-
den neuron indices, there are no subset I of [1..h] \ {k, l}such that akwk = −

∑
i∈I aiwi

or alwl = −
∑

i∈I aiwi

The above conditions constitute in fact sufficient conditions for irreducibility of a two-layer ReLU
MLP. The proof follows a similar structure as that of Theorem 4, and notice that necessarily ĥ ≥ h.

A.2 MULTI-TASK PARAMETER IDENTIFICATION

We now come back to the multi-task setting, where the teacher generates a task-specific network
using a hypernetwork conditioned on a task latent variable. Specifically, the weights of the second
layer are fixed across the tasks, but the weights of the first layer are obtained as a linear combination
of the modules: Ŵ (Θ̂, z) =

∑M
m z(m)Θ̂(m). See section 3.1 for the full description.

Given a task latent variable z, clearly the theoretical results from the last section can be applied
to the generated teacher and student network in order to establish a relation between the teacher
and student parameters. We will first extend the theoretical result establishing the sufficient and
necessary conditions on the student parameters for the student to be able to fit the teacher on any
task.

A.2.1 MULTI-TASK PARAMETER IDENTIFICATION

We provide results corresponding to ReLU MLP as well as MLPs where the activation function
belongs to a general class of smooth functions, for student networks that can be wider than the
teacher network. Theorem 2 in the main text is a special case of the following results.

ReLU MLP

Theorem 5. Assume Px has full support in the input space, M ≤ n, M̂ = M , ĥ ≥ h, and that
there exists a full rank matrix in the linear span of (Θi)1≤i≤h, and (ai)1≤i≤h are all non-zero.
Assume furthermore that there exists at least one z such that no two rows of W (Θ, z) are colinear.
Finally, assume ψ is the ReLU nonlinearity. Then, minϕz L(ϕz, Θ̂;Dz) = 0 for almost any z
is equivalent to the existence of an invertible matrix F , a partition S = (S1(i),S2(i))i∈[1..h] ⊕
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(S ′1(i),S ′2(i))i∈[1..h′] ⊕ (S0) of [1..ĥ] such that we have∑
i

aiΘi =
∑
i

âiΘ̂iF (38)

∀i ∈ [1..h], ∀j ∈ S1(i),∃α > 0 : Θ̂jF = αΘi, (39)

∀j ∈ S2(i),∃α < 0 : Θ̂jF = αΘi, (40)

aiΘi =
∑

j∈S1(i)

âjΘ̂jF −
∑

j∈S2(i)

âjΘ̂jF , (41)

∀i ∈ [1..h′], ∀(j, k) ∈ S ′1(i)× S ′1(i) ∪ S ′2(i)× S ′2(i),∃α > 0 : Θ̂j = αΘ̂k, (42)

∀(j, k) ∈ S ′1(i)× S ′2(i),∃α < 0 : Θ̂j = αΘ̂k, (43)

0 =
∑

j∈S1(i)

âjΘ̂j −
∑

j∈S2(i)

âjΘ̂j , (44)

∀j ∈ S0, 0 = âjΘ̂j (45)

Before proving the theorem, we provide a Lemma which will be useful.
Lemma 6. Assume there exists one point z0 such that W (Θ, z0) has no two rows that are colinear.
Then, for any linear subspace U containing z0, W (Θ, z) has no two rows that are colinear for
z ∈ U almost everywhere2. In particular, the set of points z in U such that W (Θ, z) has at least
two colinear rows form a finite union of strict linear subspace of U .

Proof. Recall that the ith row of W (Θ, z0) is given by Θiz0. Consider a pair i, j with i ̸= j. As no
two rows in W (Θ, z0) are colinear, there exists only a finite number of α ∈ R such that the equation
(Θi − αΘj)z = 0 yields solutions of z that are not in Ker Θi ∩ Ker Θj . Given each of such α, the
set of z that verifies the equation form a linear subspace. Taking everything together, the set of z
such thatW (Θ, z) has at least two colinear elements is a finite union of linear subspaces. Due to the
existence of z0 we know that these linear subspaces must not include any linear subspace containing
z0 and the claim follows.

We now prove the Theorem.

Proof. By assumption, there exists at least one point z0 such thatW (Θ, z0) has no two rows that are
colinear. Following Lemma 6, for almost every z in RM , the first layer weights have no two rows
that are colinear. For all z, we fix ẑ ∈ argminϕz L(ϕz, Θ̂;Dz). By assumption, L(ẑ, Θ̂;Dz) = 0
for almost every z. Considering the intersection of such z and those that generate first layer weights
with no two colinear rows, we can apply Theorem 4 for almost every z. For each such z the
theorem guarantees us a partition S = (S1(i),S2(i))i∈[1..h]⊕(S ′1(i),S ′2(i))i∈[1..h′]⊕(S0) such that
equation 15-equation 22 hold for the generated weights.

A priori these partitions need not be the same. We prove this next. Denote for a fixed S, US the
set of all points in RM for which Theorem 4 can be applied, and holds for this S. As

⋃
S U

S
k is

dense in RM and the set of possible partitions S is finite, there thus has to exist at least one S so
that RM ⊆ span(US). This means in particular that we can write any point in RM as a linear
combination of points in US . Thus for any point in RM , there exists a ẑ such that equation 15-
equation 22 holds for S .

It remains to show the existence of an invertible matrix F , as well as the constancy of the various
parameters α w.r.t. z. Using equation 17 in particular, we get that

∀z ∈ RM ,∃ẑ : ∀i ∈ [1..h], aiΘiz =

 ∑
j∈S1(i)

âjΘ̂j −
∑

j∈S2(i)

âjΘ̂j

 ẑ (46)

Because there exists a full rank matrix in the linear span of the (Θi)1≤i≤h, then clearly we can
find some scalar coefficients (λi)i∈[1..h] and linearly combine the equations 46 over i such that we

2By ”z ∈ U almost everywhere” we imply using the Lebesgue measure
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obtain an equation of the form Az = Bẑ for all z ∈ RM and corresponding ẑ, where A is full
rank. Necessarily then, B is full rank, and multiplying by its pseudoinverse yields Fz = ẑ where
F is an invertible matrix. ẑ for which the equations hold is thus a linear function of z, which also
implies the constancy of the various parameters α w.r.t. z.

The proof is concluded by applying the fact that Pz = Qz for all z ∈ RM implies P = Q on all
equation 15-equation 22.

In particular, if we restrict the student width to be equal to that of the teacher, we get the following
corollary.

Corollary 6.1. Assume Px has full support in the input space, M ≤ n, M̂ = M , ĥ = h, and
that there exists a full rank matrix in the linear span of (Θi)1≤i≤h, and (ai)1≤i≤h are all non-zero.
Assume furthermore that there exists at least one z such that no two rows of W (Θ, z) are colinear.
Finally, assume ψ is the ReLU nonlinearity. Then, minϕz L(ϕz, Θ̂;Dz) = 0 for almost any z is
equivalent to the existence of an invertible matrix F , a partition S = (S1,S2) and a permutation σ
of [1..ĥ] such that we have ∑

i

aiΘi =
∑
i

âiΘ̂iF (47)

∀i, âσ(i)ai > 0 (48)

∀i ∈ S1, âσ(i)Θ̂σ(i)F = aiΘi, (49)

∀i ∈ S2, âσ(i)Θ̂σ(i)F = −aiΘi (50)

MLP with infinitely differentiable activation function We first provide a reformulated version
of the main Theorem 4.2. from Simsek et al. (2021), which is the counterpart to our Theorem 4.
Theorem 7. Assume a teacher and student two-layer network parameterized by resp. (W ,a) and
(Ŵ , â), of hidden dimension resp. h, ĥ with h ≤ ĥ and single output unit such that

Ex∼Px
[L(x)] = 0 (51)

where
L(x) =

1

2
∥a⊤ψ(Wx)− â⊤ψ(Ŵx)∥2 (52)

Assuming

• Px has full support in the input space

• (W ,a) is irreducible, i.e.

– no output weight ak is 0
– no input weight wk is 0
– no two input weights wk,wl are identical

• ψ ∈ C∞, and ψ(n)(0) ̸= 0 for infinitely many even and odd values of n

Then there exists a partition (Si)1≤i≤h ⊕ (S ′i)1≤i≤h′ of [1..h] for some h′ such that we have

∀i ∈ [1..h],

∀j ∈ Si, ŵj = wi (53)∑
j∈Si

âj = ai (54)

and ∀i ∈ [1..h′],
∀(k, l) ∈ S ′i × S ′i, ŵk = ŵl (55)∑

j∈S′
i

âj = 0 (56)
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In essence, if the teacher parameters are irreducible, we learn the same parameters up to permutation
when the hidden layer is of the same width. If we allow the student to have a wider width, the over-
parameterization can either:

• Allow a hidden teacher neuron to subdivide into multiple student copies whose contribution
on the last layer sums up to that of a teacher neuron.

• Allow for null neurons to appear, i.e. neurons who have no contribution on the final layer.

We now provide the identification statement in multi-task teacher-student setting.

Theorem 8. Assume Px has full support in the input space,M ≤ n, M̂ =M , ĥ ≥ h, and that there
exists a full rank matrix in the linear span of (Θi)1≤i≤h, and (ai)1≤i≤h are all non-zero. Assume
furthermore that there exists at least one z such that no two rows of W (Θ, z) are identical. Finally,
assume the activation function ψ satisfies ψ ∈ C∞, and ψ(n)(0) ̸= 0 for infinitely many even and
odd values of n. Then, minϕz L(ϕz, Θ̂;Dz) = 0 for all z is equivalent to the existence of an
invertible matrix F and a partition (Si)1≤i≤h ⊕ (S ′i)1≤i≤h′ for some h′ of [1, ...ĥ] such that

∀i ∈ [1, ..h],∀j ∈ Si, Θ̂jF = Θi, (57)∑
j∈Si

âj = ai (58)

∀i ∈ [1, ..h′],∀(j, k) ∈ S ′i × S ′i, Θ̂(k) = Θ̂(j), (59)∑
j∈S′

i

âj = 0 (60)

The proof follows the same steps as Theorem 5 except for the use of Theorem 7 instead of 4 to prove
the desired equations.

A.2.2 FAILURE EXAMPLES OF COMPOSITIONAL GENERALIZATION IN MULTI-TASK
TEACHER-STUDENT

We wish to uncover in the following the conditions under which a student might achieve composition
generalization when trained on a training set of tasks. This subsection provides some failure cases
where perfectly learning the training tasks does not transfer to unseen tasks. It does not provide
proofs, but rather an intuition on the later stated theorems and the assumptions they require.

In what follows, (em) will be the canonical basis of RM .

Wider student Let us consider a teacher with one hidden neuron and three modules: Θ1 =
(A|B|C), for three vectors A,B,C that are independent. The output weight of the unique hid-
den neuron is a1 = λ. We allow the student to have more than one hidden neuron. We consider a
training task distribution defined by the binary masks {e1+e2, e2+e3}. The task distribution is then
trivially compositional and connected. Yet, we will show in the following that when ĥ = 3 = h+2,
a student can be constructed which perfectly fits the teacher on all training tasks, while being unable
to generalize compositionally. Let a student network with the following parameter specifications:

m = 1 m = 2 m = 3

Θ̂1 A B 0

Θ̂2 0 B C

Θ̂3 0 B 0

output weight
ŵ(1) λ
ŵ(2) λ
ŵ(3) −λ
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Figure A1: A No identification. Toy example of how correct identification of individual mod-
ules can lead to inconsistent neuron permutations preventing compositional generalization to un-
seen module compositions: Consider the simplified setting of a teacher and student network with
two input neurons and three hidden neurons. Both the teacher and the student haveM = 3 modules.
The upper right defines the teacher weights for each module. For instance the weights denoted by
Wb correspond to the weights connecting neuron 2 to the input for module 1. We now assume the
student during training encounters three tasks. For each task exactly one of the teacher modules
is used. Since in MLPs the ordering of neurons is permutation invariant, the student can perfectly
match the teacher weights, even when it uses a different ordering of the neurons. As a result, the
student modules can perfectly fit all three tasks, despite permuting the neuron indices. For instance,
neuron 2 in module 3 of the student contains the weights Wg whereas the corresponding neuron in
the teacher contains the weights Wh. When we now present a new task during out-of-distribution
evaluation that mixes two of the modules in the teacher, the student is required to mix the weights
of each neuron across these two modules as well. Since the neuron permutations in the student are
inconsistent with those of the teacher, the student is unable to create the correct neuron weights and
ends up unable to generalize to the OOD task. B Linear identification. Toy example of how having
connected support helps ensure that neuron permutations across modules are consistent allowing
for compositional generalization to unseen module compositions: The teacher is setup identically
to A. Different to before, the training distribution now has connected support, i.e. the binary masks
defining the task families share a non-zero entry. After learning the neurons of the student are still
permuted compared to the neurons of the teacher but this time the permutation is consistent across
modules, i.e. compared to the teacher only rows are permuted. As a result, when presenting a novel
task from a task family that mixes modules, the student is able to match each of the teacher neurons
and therefore compositionally generalizes. While this example only shows a permutation of the
learned student neurons consistent across modules, in general the student modules will be a linear
transformation of the teacher modules, hence the naming linear identification. Importantly this lin-
ear transformation is consistent across modules given the conditions of Theorem 2 are satisfied.
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One can verify that this behaves as expected on the training tasks. However, if we now take task
e1 + e2 + e3, one can also verify that it does not behave as the teacher. The same argument can
be made to break the compositional generalization of any teacher network width given this training
task distribution.

Disconnected tasks We can consider a student with two neurons and two modules. Let Θ1 =
(A|B) and Θ2 = (C|D) for four linearly independent vectors A,B,C,D, and output weights all
equal a1 = a2 = λ. If we only consider tasks defined by masks {e1, e2}, a valid student is given
by Θ̂1 = (A|D) and Θ̂2 = (C|B) and the same output weights. This student does however not
generalize to the task described by mask e1 + e2

Non-compositional support This is a trivial failure case: if there is a teacher module which does
not appear in the training task distribution, then it is hopeless for the student to generalize to new
tasks involving this unseen module.

A.2.3 COMPOSITIONAL GENERALIZATION

We will now provide the formal theorem for the ReLU nonlinearity as the activation function. The-
orem 1 in the main text is an informal presentation of this theorem. To show compositional general-
ization, similarly to Theorem 5, we will show that the z-dependent partition S1,S2 and permutation
σ which we obtain by applying Theorem 4 is in fact common to all task latent variables in the sup-
port. Coupled with the assumption that Pz has compositional support it then suffices to show that
the sufficient conditions of Corollary 6.1 hold.

Assuming the support of the task distribution contains task families Zk as described in the main text,
we will proceed in two steps:

1. Given a k, we will show that if the student achieves zero loss on all tasks in Zk, then the
partition S1,S2 and permutation σ for all z ∈ Zk is identical.

2. Using the property of connected support, we will ”glue” these partitions and permutations
together to show that they are in fact the same for all k.

Showing the first step requires Pz to verify a number of properties. First of all, we clearly need
that Pz is such that the probability of choosing a value from Zk is non-zero for all k. However,
we additionally need some properties how the probability mass is distributed on each Zk. The key
idea of our proof is to show that generalization within Zk actually occurs as soon as we have zero
loss on an appropriate basis of Zk. For this to work an obvious necessary condition is that a (strict)
linear subspace of span(Zk) should not contain probability mass larger than zero. Note that this
implies that the probability that any dk i.i.d. samples of Zk, where dk = dim(span(Zk)) denotes
the dimension of Zk, will not form a basis of the space spanned by Zk is zero. In fact, we need a
slight generalization of this idea, as we also need that certain other non i.i.d. sampling of dk points
have zero probability. For this to hold we require that the induced probability distribution obtained
by projecting the points in Zk on the unit sphere admits a density function.

Formally, we thus want the training task distribution Pz to have the property that we can extract a
family Zk from the support Z of Pz , with an associated family of binary vectors {b1, . . . , bK} and
spans span(Zk) = {v ⊙ bk | v ∈ RM}, such that the following three conditions are satisfied:

• Pz∼Pz
[z = 0] = 0

• For any k, Pz∼Pz [z ∈ Zk] > 0

• Pz∈Zk
projected on the unit sphere admits a probability density function on the unit sphere

where we denote by Pz∈Zk
the probability distribution Pz conditioned on drawing a value from Zk.

The above conditions would hold, for example, for any distributions Pz which is a discrete mixture
of distributions Pz∈Zk

, such that each Pz∈Zk
is a uniform distribution defined on the set of convex

combinations of the canonical vectors corresponding to the non-zero entries of bk, as we do in our
experiments.
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We are now ready to state and prove the theorem. The proof for the general class of smooth activation
function used in Appendix A.2.1 follows the same steps, we omit the details.

Theorem 9. Assume Px has full support in the input space, M ≤ n, M̂ =M , ĥ = h, that
∑

i aiΘi

is full rank, and (ai)1≤i≤h are all non-zero. Assume furthermore that for all modules Θ(m), no two
rows are colinear, that we can extract a family Zk from the support Z of Pz with the above property,
and that Pz has connected and compositional support. Then,

Ez∼Pz

[
min
ϕz

L(ϕz, Θ̂;Dz)

]
= 0 =⇒ ∀z,min

ϕz

L(ϕz, Θ̂;Dz) = 0 (61)

Furthermore, for any k, we denote dk = dim(span(Zk)). Then for any set of task latent variables
F =

⋃
k Fk such that Fk = {zk,1, ..zk,dk+1} are sampled i.i.d. from Pz∈Zk

, we have

∀z ∈ F ,min
ϕz

L(ϕz, Θ̂;Dz) = 0 =⇒ ∀z,min
ϕz

L(ϕz, Θ̂;Dz) = 0 (62)

In the following, we will prove the result in equation 61. The result in equation 62 requires a more
involved intermediate result which we provide at the end of the section.

Proof of Theorem 9, first part. In a first step we prove the existence of an invertible matrix F , and
for each k, the existence of permutations σk of [1..h], and partitions Sk1 ,Sk2 of [1..h] such that
∀z ∈ span(Zk),

∀i ∈ Sk1 , âiΘ̂iFz = aσk(i)Θσk(i)z

∀i ∈ Sk2 , âiΘ̂iFz = −aσk(i)Θσk(i)z.
(63)

We start by arguing that we may assume without loss of generality that all z ∈ Zk satisfy some nice
properties. First we claim that we may assume that all points z ∈ Zk satisfy minϕz L(ϕz, Θ̂;Dz) =

0. This holds as Ez∼Pz

[
minϕz L(ϕz, Θ̂;Dz)

]
= 0 and our assumption that Pz∼Pz

[z ∈ Zk] > 0

implies that the set of points z of Zk such that minϕz L(ϕz, Θ̂;Dz) ̸= 0 has zero probability.

Next we argue that we may assume that for all z ∈ Zk we have that W (Θ, z) contains no two rows
that are colinear. To see why this is true recall that we assumed that all modules Θ(m) contain no
two rows that are colinear. In other words, all canonical basis vectors corresponding to the non-
zero entries of bk have this property and the claim thus follows from Lemma 6 together with our
assumption that Pz∈Zk

projected on the unit sphere admits a probability density function on the unit
sphere.

Taken together, this allows us to apply Theorem 4 on all elements of Zk. That is, for all z in Zk,
there exists σz,S1(z),S2(z) such that we have

∀i ∈ S1(z), âiΘ̂iẑ = aσz(i)Θσz(i)z (64)

∀i ∈ S2(z), âiΘ̂iẑ = −aσz(i)Θσz(i)z (65)∑
i

âiΘ̂iẑ =
∑
i

aiΘiz (66)

where here, and henceforth, ẑ = argminϕz L(ϕz, Θ̂;Dz).

A priori these σz, S(z) = (S1(z), S2(z)) need not be the same. We prove this next.

We group the set of all points inZk into setsU (σ,S) so that the points inU (σ,S) all obtain (σ, S) when
applying Theorem 4. Clearly,

⋃
(σ,S) U

(σ,S) = Zk. Furthermore, because Pz∈Zk
when projected

onto the unit sphere admits a density function, it follows that Zk contains an infinite number of
points of which any subset of dk elements form a basis of span(Zk). Since the set of possible
permutations and partitions (σ, S) is finite, there has to exist at least one pair (σ, S) so that U (σ,S)

contains a basis of span(Zk). By linearity, this implies in turn that Theorem 4 holds for this (σ, S)
for every point in span(Zk).
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We can thus fix σk,Sk1 ,Sk2 such that for all z ∈ span(Zk):
∀i ∈ Sk1 , âiΘ̂iẑ = aσk(i)Θσk(i)z (67)

∀i ∈ Sk2 , âiΘ̂iẑ = −aσk(i)Θσk(i)z (68)∑
i

âiΘ̂iẑ =
∑
i

aiΘiz. (69)

It remains to show the existence of the desired matrix F . Towards this end, recall that we assumed
that

∑
i aiΘi is full rank. As we also assumed that span(

⋃
k Zk) = RM , it follows from equation 69

that
∑

i âiΘ̂i also has full rank. Thus, letting F = (
∑

i âiΘ̂i)
† ∑

i aiΘi, where A† denotes the
pseudoinverse of A, we obtain a matrix that is full rank and satisfies ẑ = Fz for all z in span(Zk),
for all k. Taking everything together, the equality in equation 63 is obtained.

We now show that the Sk1 ,Sk2 , σk are the same for all k. By our assumption on the connectedness
of the sets Zk, it suffices to show the following implication: if k ̸= l are such that there exists a
z in span(Zk) ∩ span(Zl) so that W (Θ, z) has no two rows that are colinear, then σk = σl, and
Sk1 = Sl1,Sk2 = Sl2.

To see this, fix some z in span(Zk) ∩ span(Zl) so that W (Θ, z) has no two rows that are colinear.
From equation 63, we obtain the equality

∀i ∈ [1..h], aσk(i)Θσk(i)z = (−1)1i∈Sk
2 âiΘ̂iFz (70)

= (−1)1i∈Sk
2 (−1)1i∈Sl

2aσl(i)Θσl(i)z (71)
i.e. we get that for any i, Θσk(i)z,Θσl(i)z are colinear, which is a contraction unless σk(i) = σl(i).
Therefore, σk = σl, as desired.

We now show Sk2 = Sl2. Without loss of generality, assume there exists i such that i ∈ Sk2 and
i /∈ Sl2. We fix such an i. Then, using equation 70 as well as σk(i) = σl(i),

aσk(i)Θσk(i)z = −aσl(i)Θσl(i)z (72)

= −aσk(i)Θσk(i)z (73)
and thus aσk(i)Θσk(i)z = 0, which again is a contradiction of the non-colinearity of the rows of
W (Θ, z). The claim thus follows.

The upcoming lemma is crucial for demonstrating that students almost surely generalize composi-
tionally after achieving zero loss on a finite task sample from Pz . Loosely speaking this Lemma is a
generalization of Lemma 6 in that it asserts that under the condition that no two elements from (Θi)i
are identical up to scaling, a randomly sampled set of M + 1 task latent vectors has the following
property: there exists a rescaling of the points such that the sum of rescaled points is zero (this
trivially holds as we have more points than the dimension of the space) and such that by applying
arbitrary sign inversions and multiplication by arbitrary elements of (Θi)i to each scaled vector, the
sum would not be zero unless the matrices and the sign inversion applied to all vectors are the same.
In the lemma we choose the M + 1 points from the unit sphere, and one can think of them being
chosen i.i.d. uniformly. Within the proof of Theorem 9 we will then argue that our assumptions on
Pz allow us to replace this uniform sampling from the sphere by a sampling according to Pz .

Henceforth, measures on the sphere are spherical measures (resp. product measure of spherical
measures for Cartesian products of spheres), and Lebesgue measures in Rd for all d.

Lemma 10. Let a family of Rn×d matrices (Θi)1≤i≤h. Assume furthermore that there exists at least
one z0 ∈ Rd such that no two elements of (Θiz0)i are colinear. Let S be the unit sphere of Rd.
Then, for almost every set of d+ 1 points ẑ1, . . . , ẑd+1 in Sd+1, there exists λ1, . . . , λd+1 such that
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(ze)e := (λeẑe)e verifies the following conditions:∑
e∈[1..d+1]

ze = 0

∀(ie)e ∈ [1..h]d+1,∀(se)e ∈ {−1, 1}d+1 :∑
e∈[1..d+1]

seΘieze = 0 =⇒ ∀k, l ∈ [1..d+ 1], (ik = il) ∧ (sk = sl).

(74)

Proof. We define the matrix I = (I1, I2..Id+1) where Ii for all i is the M ×M identity matrix, the
isomorphism Φ : (ze)e∈[1..d+1] →

⊕
e∈[1..d+1] ze which concatenates d + 1 vectors of Rd into a

vector of Rd(d+1), and the projection to the unit sphere P : x → x
∥x∥ , defined everywhere except

at the origin. Finally, let C = {(ze)e∈[1..d+1] | ∃Q ⊊ [1..d+ 1] : (ze)e∈Q linearly dependent}, i.e.
the set of family of d+ 1 vectors such that not any subset of cardinality d form a basis of Rd.

The proof will proceed in the following steps:

1. First, we show that for almost any x ∈ P (Ker I) \ Φ(C), property 74 holds for Φ−1(x).

2. Then, we show that there exists a surjective function Ψ from Sd+1 \C to P (Ker I)\Φ(C),
such that the pre-image of any zero-measure set is also zero-measure, and such that for all
(ze)e∈[1..d+1] ∈ Sd+1 \ C, Ψ((ze)e) is a transformation which scales each member by a
scalar and concatenates them, i.e. Ψ((ze)e) ∈ {Ψ(λeze)e) | (λe)e∈[1..d+1]∈Rd+1}.

We remind the reader that if a surjective function f : A → B between two metric spaces A,B
equipped by metrics µ, µ′ verifies that all pre-image of nullsets are nullsets, i.e. ∀X ⊂ B : µ′(X) =
0 =⇒ µ(f−1(X)) = 0, then we have that if some property is true for almost every x ∈ B, it
must be true for f(x) for almost every x ∈ f−1(B) = A. If the above 2 points are true, then by
application of this reasoning, we get that for almost any (ze)e ∈ Sd+1 \ C, there exists (λe)e such
that property 74 holds for (λeze)e∈[1..d+1]. Since it can be shown that the measure of Sd+1 \ C is
0, we have that the assertion holds almost everywhere on Sd+1, which would conclude the proof.

In the remainder we will prove the two points above.

Step 1: Let some i = (ie)e ∈ [1..h]d+1 and s = (se)e ∈ {−1, 1}d+1, such that there exists a pair
(n,m) such that in ̸= im or sn ̸= sm. We fix such a pair. LetMi,s = (s1Θi1 , ..sd+1Θid+1

). We will
now show that Ker I ̸⊂ KerMi,s, i.e. that there exists a point in Ker I which is not in KerMi,s.
Let the family (ze)e = (1e=n∨e=m(−1)1e=nz0)e. Clearly,

∑
e ze = z0 − z0 = 0, thus Φ((ze)e)

belongs to the Kernel of I. However,
∑

e seΘieze = 0 =⇒ snΘinz0 = −smΘimz0. Because
by assumption no two elements of (Θiz0)i are colinear, necessarily

∑
e seΘieze = 0 =⇒ (sn =

sm) ∧ (in = im), which contradicts the definition of i, s. Therefore, necessarily
∑

e seΘieze ̸= 0 ,
i.e. Φ((ze)e) ̸∈ KerMi,s.

KerMi,s is a linear subspace, and P (Ker I) is a unit sphere living in a linear subspace. Since
Ker I ̸⊂ KerMi,s , then P (Ker I) ̸⊂ KerMi,s and thus P (Ker I) ∩ KerMi,s has zero mea-
sure in P (Ker I). Because a finite union of nullsets is a nullset, it is then clear that P (Ker I) ∩⋃

i,s KerMi,s has zero measure in P (Ker I), where the union is done over i = (ie)e ∈ [1..h]d+1

and s = (se)e ∈ {−1, 1}d+1, such that there exists a pair (n,m) such that in ̸= im or sn ̸= sm. On
the other hand, it is clear that for any family i, s such that all elements of i resp. s are the same, we
have P (Ker I) ⊂ KerMi,s.

This now proves that for almost any x ∈ P (Ker I), Φ−1(x) must satisfy the property 74. We can
see that Φ(C) has zero measure in P (Ker I), which finalizes the claim.

Step 2: Let S+ = {(ze)e∈[1..d+1] ∈ Sd+1 | ∃(λe)e∈[1..d+1] : (
∑

e λeze = 0) ∧ (∀e, λe > 0)}.
We will define two surjective functions, Ξ : \C → S+\C and Υ : S+\C → P (Ker I)\Φ(C) such
that their respective pre-image of nullsets are nullsets, and each of which multiplies each member of
the input (ze)e by a scalar, before eventually concatenating them. If so, their composition Ψ = Υ◦Ξ
will inherit these properties, which finalizes the proof.
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We first define Υ. Notice that on S+ \ C, the scalar family (λe)e∈[1..d+1] is unique up to a scalar
multiplication. The family becomes unique if we furthermore restrict it to be of norm 1. We can
thus define the function Υ which maps to each (ze)e∈[1..d+1] the unique Φ((λeze)e∈[1..d+1]) such
that (

∑
e λeze = 0) ∧ (∀e, λe > 0) ∧ (

∑
e λ

2
e = 1). Clearly, Υ defines a bijection between S+ \ C

and P (Ker I) \Φ(C), with the inverse function Υ−1 : x→ ( ze

∥ze∥ )e with (ze)e = Φ−1(z), defined
on P (Ker I)\Φ(C). Furthermore, Υ−1 is differentiable everywhere on P (Ker I)\Φ(C), and thus
preserves nullsets.

We now define Ξ. For all points (ze)e in Sd+1 \ C, there exists a family of non-zero scalars (λe)e,
unique up to a scalar multiplication, such that

∑
e λeze = 0. Given an arbitrary such (λe)e for which

λ1 > 0, we can define the function Ξ from Sd+1 \ C to S+ \ C as Ξ : (ze)e → (sign(λe)ze)e.
Ξ is surjective, as it leaves all elements of S+ \ C ⊂ Sd+1 \ C unchanged. Furthermore, the
preimage of any set X by Ξ is included in the finite union

⋃
sXs, where s ∈ {−1, 1}d+1, and

Xs = {(ze)e | (seze)e ∈ X}. Since Xs is trivially a nullset if X is a nullset, the preimage of
nullsets by Ξ are nullsets.

We can now prove the part of the theorem stating that a final sample from the training task distribu-
tion will almost surely allow the student to generalize compositionally.

Proof of Theorem 9, second part. Observe that it suffices to show that for any k, equation 63 holds
almost surely when sampling dk + 1 points i.i.d from the probability distribution Pz∈Zk

. The re-
mainder of the proof is then identical to the continuous case.

Fix some set Zk. As in the continuous case we may assume without loss of generality that all
points z in Zk satisfy that no two rows of W (Θ, z) are colinear and that they achieve zero loss, i.e.
minϕz L(ϕz, Θ̂;Dz) = 0.

Now, consider Fk = (zk,e)1≤e≤dk+1, a family of dk+1 task vectors sampled i.i.d. from Zk follow-
ing Pz∈Zk

. Due to the assumption that Pz∈Zk
projected onto the unit sphere admits a probability

density function, any subset of size dk of Fk form a basis of span(Zk) almost surely, and in particu-
lar span((zk,e)1≤e≤dk+1) = span(Zk) with probability one. Furthermore, we can apply Theorem 3
to each vector individually. If we can show that the resulting permutations σ and partitions S1,S2
are identical across these vectors, then that would suffice to conclude the proof.

In the previous scenario where the loss was zero at an infinite number of points in Zk, it was pos-
sible to extract a basis from span(Zk), with each basis element having a consistent permutation
and partition. This strategy, however, is not applicable in the current context. To establish the uni-
formity of permutations and partitions for all vectors, we must first refer to Lemma 10, and show
that with probability 1, Fk has the property that there exists a family of scalar (λk,e) such that
(λk,ezk,e)1≤e≤dk+1 verifies equation 74. We will prove this next.

Because we have that any vector z in Zk satisfy that no two rows of W (Θ, z) are colinear, equiv-
alently, no two elements of (aiΘiz)i have two colinear elements. We can thus apply the lemma
to (aiΘi)i, which would guarantee that almost everywhere on SM+1 where S is the unit sphere of
RM , the property holds. In fact, if we consider the sphere Sk of the linear subspace span(Zk), it
is possible to show that the property holds everywhere on Sdk+1

k except for a set of measure zero.
Because Pz∈Zk

projected onto the unit sphere admits a probability density function, it is easy to see
that when sampling i.i.d. dk+1 samples from Pz∈Zk

and projecting each of them on the unit sphere,
the family will be on this set of measure zero with probability zero. Because whether the property
holds or not is left unchanged by normalization of each vectors in the family, clearly the property
must hold with probability 1 for Fk. This concludes the claim.

We now show that all the permutations and partitions associated with the vectors in Fk are the same.

For all z, we fix ẑ ∈ argminϕz L(ϕz, Θ̂;Dz). As argued above already, it follows from Theorem 3
that for any z in Fk, there exists a permutation and partition of [1..h], σz and (S1(z),S2(z)) such
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that we have
∀i ∈ S1(z), âiΘ̂iẑ = aσz(i)Θσz(i)z (75)

∀i ∈ S2(z), âiΘ̂iẑ = −aσz(i)Θσz(i)z (76)∑
i

âiΘ̂iẑ =
∑
i

aiΘiz (77)

Similarly as before, since span(
⋃

k Fk) = span(
⋃

k Zk) = RM , the last equality can be used to
obtain an invertible matrix F such that for any k, and any z in Fk, ẑ = Fz, which establishes a
linear mapping from z to ẑ.

In the remainder, we drop the index in k for notational simplicity. We fix the family of scalars (λe)
such that equation 74 holds for (λeze)e.

In particular, we have
∑

e λeze = 0. By multiplying by F , we have
∑

e λeẑe = 0.

For any i, multiplying by âiΘ̂i, ∑
e

λeâiΘ̂iẑe = 0 (78)

which in turn implies ∑
e

(−1)1i∈S2(ze)aσe(i)Θσze (i)
λeze = 0 (79)

Since equation 74 holds for (λeze)e, clearly, ∀i ∈ [1..h],∀e, f, σze(i) = σzf
(i),S1(ze) = S1(zf )

and S2(ze) = S2(zf ), as desired.
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Figure A2: Out-of-distribution loss is sensitive to overparameterization. Numbers denote the factor
by which the student dimension is larger than the teacher. Error bars denote the standard error of the
mean over 3 seeds.

Table A1: Effect of weight decay on module alignment in the overparameterized regime. Numbers
are module alignment averaged over 5 seeds.

M̂ = 16 ·M M̂ = 32 ·M
Weight decay strength ĥ = 16 · h ĥ = 32 ∗ h ĥ = 16 · h ĥ = 32 · h
0.001 0.7704 0.7165 0.8369 0.8144
0.0001 0.7699 0.6752 0.8483 0.8043
0.00001 0.7633 0.6727 0.8346 0.8292
0 0.7542 0.7109 0.8421 0.8076

B ADDITIONAL EXPERIMENTS

B.1 MULTI-TASK TEACHER-STUDENT

Overparameterization hurts compositional generalization. We show in Figure A2 the out-of-
disribution (OOD) loss for the experiment presented in Figure 2C. We see that the degradation in
OOD loss mirrors that of identification.

Weight decay does not improve module alignment of overparameterized models. We repeat
the overparameterization experiment with varying weight decay strengths, for the discrete task dis-
tribution. We report the results in Table A1. We see that regularization using weight decay does not
seem to help to improve module alignment for overparameterized models.

B.2 HYPERTEACHER

Sample complexity scales with the number of tasks. We investigated empirically, how many
training tasks we need to present in order to obtain a specified OOD accuracy. Figure A3 shows this
scaling behavior.

Sensitivity to finite data samples for task inference. In contrast to the infinite data regime con-
sidered in the theory, in the hyperteacher we rely on gradient-based meta-learning from finite sam-
ples. We investigated the dependence of our results on the number of train shots in the support
and query set for each task in Figure A4, finding that reducing the number from the N = 256 we
consider throughout our experiments leads to a decrease in performance.

Sensitivity to fraction of held-out module combinations during training. In our main results
we hold-out 25% of possible module combinations during training to evaluate OOD accuracy and
quantify compositional generalization. In Figure A5 we vary this fraction for M ∈ {4, 8, 16} and
K = 3 revealing that for larger numbers of modules, OOD accuracy stays increasingly robust across
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Figure A6: Linear decodability for varying number of modules M ∈ {4, 6, 8} and maximum num-
ber of modules per combination K ∈ {1, 2, 4, 8} in the hyperteacher.

larger fractions of tasks held-out during training. Note, that at the same time as expected training
accuracy remains comparably stable.

Linear decodability for varying number of modules and combination size. To complement
Figure 3E in the main text, we show the corresponding linear decodability across modules M ∈
{4, 6, 8} and maximum number of modules per combination K ∈ {1, 2, 4, 8} in Figure A6.

Detailed metrics. For completeness we provide detailed training metrics for all methods across a
range of settings for M ∈ {4, 8} and K ∈ {1, 2, 4, 8} in Tables A2, A3, A4, A5, A6, A7, A8 and
present training curves in Figure A7.

B.3 COMPOSITIONAL PREFERENCES

Overparameterization in the compositional preference environment. Motivated by the sensi-
tivity to overparameterization in the multi-task teacher-student setting, we investigated the effect of
varying the hidden dimension and number of modules in the hypernetwork models on the OOD loss

Table A2: Hyperteacher comparison of accuracies across models for M=4 K=1.

ANIL MAML Linear hypernetwork Nonlinear hypernetwork

Train accuracy 79.68 ± 0.25 85.14 ± 0.57 80.98 ± 8.92 97.31 ± 0.76
Test accuracy 79.72 ± 0.12 85.13 ± 0.54 80.89 ± 9.1 97.15 ± 0.93
OOD accuracy 46.52 ± 0.8 20.53 ± 0.72 20.42 ± 1.64 20.93 ± 2.22
OOD accuracy (K=1) 46.48 ± 0.83 20.58 ± 0.74 20.59 ± 1.52 20.9 ± 2.19
OOD accuracy (K=2) 50.47 ± 0.26 26.71 ± 0.26 27.8 ± 2.39 26.78 ± 3.33
OOD accuracy (K=4) 48.18 ± 1.2 22.74 ± 0.59 24.57 ± 2.57 23.04 ± 2.86
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Figure A7: OOD accuracy over the course of training for various models, number of modules M ∈
{4, 6, 8} and maximum number of modules per combination K ∈ {1, 2, 4}.

Table A3: Hyperteacher comparison of accuracies across models for M=4 K=2.

ANIL MAML Linear hypernetwork Nonlinear hypernetwork

Train accuracy 66.45 ± 0.23 68.36 ± 1.3 88.32 ± 4.83 98.05 ± 0.09
Test accuracy 66.17 ± 0.06 68.11 ± 1.02 88.29 ± 5.09 98.0 ± 0.05
OOD accuracy 60.78 ± 0.24 55.41 ± 0.8 76.35 ± 10.11 90.9 ± 0.26
OOD accuracy (K=1) 59.12 ± 0.98 53.33 ± 1.17 71.32 ± 9.97 89.24 ± 0.88
OOD accuracy (K=2) 61.38 ± 0.21 55.98 ± 0.53 77.41 ± 10.18 90.79 ± 0.58
OOD accuracy (K=4) 60.61 ± 1.46 50.33 ± 1.36 71.96 ± 14.18 68.31 ± 6.31

Table A4: Hyperteacher comparison of accuracies across models for M=4 K=4.

ANIL MAML Linear hypernetwork Nonlinear hypernetwork

Train accuracy 65.63 ± 0.32 68.91 ± 0.28 92.22 ± 4.68 97.43 ± 0.36
Test accuracy 65.58 ± 0.25 68.72 ± 0.3 92.29 ± 4.66 97.49 ± 0.27
OOD accuracy 63.14 ± 0.7 63.29 ± 0.6 88.61 ± 6.15 94.9 ± 0.23
OOD accuracy (K=1) 59.77 ± 1.23 56.29 ± 1.54 82.55 ± 8.17 91.79 ± 0.52
OOD accuracy (K=2) 62.82 ± 0.9 63.16 ± 0.83 88.67 ± 6.5 95.13 ± 0.06
OOD accuracy (K=4) 65.55 ± 3.67 66.69 ± 3.38 89.0 ± 7.52 95.63 ± 1.46

Table A5: Hyperteacher comparison of accuracies across models for M=8 K=1.

ANIL MAML Linear hypernetwork Nonlinear hypernetwork

Train accuracy 66.22 ± 0.64 65.41 ± 1.16 88.13 ± 2.69 95.85 ± 0.12
Test accuracy 66.01 ± 0.49 65.16 ± 1.35 87.91 ± 2.87 95.72 ± 0.08
OOD accuracy 55.8 ± 0.26 47.42 ± 2.16 26.67 ± 3.12 26.91 ± 0.4
OOD accuracy (K=1) 56.06 ± 0.24 47.68 ± 2.25 26.73 ± 3.12 26.9 ± 0.49
OOD accuracy (K=2) 56.9 ± 0.21 49.21 ± 2.35 30.6 ± 3.38 30.45 ± 0.52
OOD accuracy (K=4) 55.77 ± 0.28 47.63 ± 2.14 26.51 ± 3.28 26.5 ± 0.75
OOD accuracy (K=8) 54.07 ± 0.31 45.77 ± 2.24 21.85 ± 2.93 22.81 ± 1.3
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Table A6: Hyperteacher comparison of accuracies across models for M=8 K=2.

ANIL MAML Linear hypernetwork Nonlinear hypernetwork

Train accuracy 60.0 ± 0.49 61.33 ± 0.68 89.9 ± 2.77 96.91 ± 0.25
Test accuracy 60.07 ± 0.31 61.33 ± 0.45 90.06 ± 2.56 96.95 ± 0.22
OOD accuracy 59.76 ± 0.27 60.6 ± 0.37 87.45 ± 2.55 96.05 ± 0.34
OOD accuracy (K=1) 59.53 ± 0.56 60.76 ± 0.71 86.73 ± 2.56 96.01 ± 0.53
OOD accuracy (K=2) 59.76 ± 0.33 60.48 ± 0.31 87.49 ± 2.35 95.9 ± 0.39
OOD accuracy (K=4) 59.84 ± 0.24 60.01 ± 0.31 82.56 ± 1.65 77.79 ± 1.32
OOD accuracy (K=8) 58.6 ± 0.22 57.99 ± 0.32 60.6 ± 6.61 33.08 ± 1.94

Table A7: Hyperteacher comparison of accuracies across models for M=8 K=4.

ANIL MAML Linear hypernetwork Nonlinear hypernetwork

Train accuracy 60.9 ± 0.44 63.02 ± 0.62 93.64 ± 0.18 95.78 ± 0.61
Test accuracy 60.64 ± 0.3 62.93 ± 0.37 93.57 ± 0.25 95.71 ± 0.55
OOD accuracy 60.63 ± 0.21 62.78 ± 0.24 93.5 ± 0.24 95.68 ± 0.55
OOD accuracy (K=1) 58.77 ± 0.31 58.81 ± 0.38 86.81 ± 0.31 92.6 ± 1.47
OOD accuracy (K=2) 59.83 ± 0.4 61.39 ± 0.45 92.3 ± 0.22 95.25 ± 0.7
OOD accuracy (K=4) 61.2 ± 0.19 64.0 ± 0.2 93.92 ± 0.17 95.88 ± 0.51
OOD accuracy (K=8) 62.32 ± 0.26 62.85 ± 0.23 88.18 ± 1.03 84.43 ± 4.49

Table A8: Hyperteacher comparison of accuracies across models for M=8 K=8.

ANIL MAML Linear hypernetwork Nonlinear hypernetwork

Train accuracy 61.41 ± 0.37 63.87 ± 0.38 91.54 ± 0.89 94.83 ± 0.1
Test accuracy 61.41 ± 0.28 64.05 ± 0.19 91.56 ± 0.71 94.71 ± 0.24
OOD accuracy 61.53 ± 0.26 64.11 ± 0.24 91.65 ± 0.72 94.75 ± 0.24
OOD accuracy (K=1) 57.71 ± 0.1 57.75 ± 0.22 83.5 ± 0.9 89.26 ± 0.95
OOD accuracy (K=2) 58.99 ± 0.42 59.77 ± 0.56 88.32 ± 1.06 92.97 ± 0.23
OOD accuracy (K=4) 61.37 ± 0.31 64.12 ± 0.2 91.75 ± 0.69 94.82 ± 0.15
OOD accuracy (K=8) 63.63 ± 1.52 66.73 ± 1.86 92.04 ± 0.54 95.49 ± 0.36
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Figure A8: Effect of overparameterization on the OOD loss in the compositional preference envi-
ronment.

Figure A9: Complementary figure to Figure 4E and 4F reporting an additional metric that measures
the fraction of times the learned policy exactly follows the optimal policy along the whole path and
therefore obtains the only environment reward by reaching the goal object. Error bars denote the
standard error of the mean over 3 seeds.

achieved in the compositional preference environment. Figure A8 shows that within the range of
values we were able to accommodate given the maximum GPU memory available to us, overparam-
eterization seems to have no negative influence on the OOD loss. This is in line with our empirical
observations for the continuous multi-task teacher-student setting, as preferences for each task are
continuous combinations of the selected modules.

B.4 COMPOSITIONAL GOALS

Modular architectures outperform monolithic architectures by leveraging compositional
structure. Figure 4E and 4F report the out-of-distribution accuracy of the learned policy with
respect to the ground-truth optimal policy. In Figure A9, we complement it with another metric that
measures the fraction of times the learned policy exactly follows the optimal policy along the whole
path and therefore obtains the only environment reward by reaching the goal object. It is possible
that the learned policies only deviate from the optimal trajectory in a way that would also yield the
reward which would not count towards this fraction.

Over-parameterization in the compositional goal environment. Similarly, we investigated the
effect of varying the hidden dimension and number of modules in the hypernetwork models on the
OOD accuracy achieved in the compositional goals environment. Different from the compositional
preference environment, we have a discrete set of goals in this case. While in the discrete multi-task
teacher-student setting OOD performance was sensitive to over-parameterization, Figure A10 shows
relatively stable OOD accuracy across varying hidden and module dimension.
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Figure A10: Effect of overparameterization on the OOD accuracy in the compositional goals envi-
ronment.

C EXPERIMENTAL DETAILS

C.1 MULTI-TASK TEACHER-STUDENT SETUP

C.1.1 DATA GENERATION

We generate data by first initializing the teacher parameters once. Then, for each task, we sample
a task latent variable z which induces a noiseless mapping from inputs x to targets y following
equation 3, modulo a rescaling factor by the square root of the input dimension n:

y = aψ(
1√
n
W (Θ, z)x) (80)

For all experiments in the multi-task teacher student, we fix the activation function ψ to the ReLU
nonlinearity, the task latent variable dimension to M = 6, input dimension to n = 16, hidden
dimension of the teacher to h = 16, and output dimension to o = 4. The teacher parameters Θ and
a are generated by sampling the entries i.i.d. from the centered truncated normal distribution, with
standard deviation resp. 1√

M
and 1√

h
. We define the distribution over inputs x to be the uniform

distribution with 0 mean and standard deviation 1 on Rn. Finally, we specify the distribution over
task latent variable z. We distinguish 2 settings:

Continuous task distribution. Here, we consider tasks where modules are sparsely, linearly com-
bined. A task distribution is specified by a set of masks, that are binary vectors of RM . Given a mask,
we sample a task z as follows. We first sample an M -dimensional random variable following the
exponential distribution. Then, we zero-out entries corresponding to the mask being 0. We then
normalize the vector such that the sum equals 1. This procedure simulates the uniform sampling
from the simplex spanning the directions in which the mask is non-zero. Finally, we add the mask
to the vector and rescale the outcome by 0.5. This ensures two tasks generated by distinct masks do
not have intersecting support (but intersecting span). See Algorithm 1 for the pseudocode.

Algorithm 1 Algorithm to sample the tast latent variable from given a mask.

Require: mask m of size M return task latent variable z
sample M -dimensional vector z from the exponential distribution
z ← z ⊙m
z ← z

1+∥z∥1

z ← 0.5 · (z +m)
return z

The task distribution is then generated as follows: first, a mask is sampled randomly and uniformly
from the pre-specified set. Then, the vector z is sampled following the above procedure.
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Table A9: Training task distribution used for our experiments. Each column defines a distribution.
For discrete settings, the set of vectors specify those in the training set. We omit the normalizing
factor for simplicity. For continuous settings, the vectors specify the set of masks used in the training
set to generate the distribution.

Discrete Continuous
Connected Disconnected Connected Disconnected

(1,0,0,0,0,0) (1,0,0,0,0,0) (1,1,0,0,0,0) (1,1,1,0,0,0) (1,1,0,0,0,0) (1,0,0,0,0,0) (1,1,1,0,0,0)
(0,1,0,0,0,0) (0,1,0,0,0,0) (0,1,1,0,0,0) (0,0,1,1,1,0) (0,1,1,0,0,0) (0,1,0,0,0,0) (0,0,0,1,1,1)
(0,0,1,0,0,0) (0,0,1,0,0,0) (0,0,1,1,0,0) (1,0,0,0,1,1) (1,0,1,0,0,0) (0,0,1,0,0,0) (1,1,0,0,0,0)
(0,0,0,1,0,0) (0,0,0,1,0,0) (0,0,0,1,1,0) (0,0,0,1,1,0) (0,0,0,1,0,0) (0,1,1,0,0,0)
(0,0,0,0,1,0) (0,0,0,0,1,0) (0,0,0,0,1,1) (0,0,0,0,1,1) (0,0,0,0,1,0) (1,0,1,0,0,0)
(0,0,0,0,0,1) (0,0,0,0,0,1) (1,0,0,0,0,1) (0,0,0,1,0,1) (0,0,0,0,0,1) (0,0,0,1,1,0)
(1,1,0,0,0,0) (1,1,0,0,0,0) (0,0,0,0,1,1)
(0,1,1,0,0,0) (0,1,1,0,0,0) (0,0,0,1,0,1)
(0,0,1,1,0,0) (1,0,1,0,0,0)
(0,0,0,1,1,0) (0,0,0,1,1,0)
(0,0,0,0,1,1) (0,0,0,0,1,1)
(1,0,0,0,0,1) (0,0,0,1,0,1)

Discrete task distribution. Here, we focus on task latent variables that are simple normalized
many-hot vectors. For example, for M = 4, we would consider vectors such as (0, 0, 0, 1),
1√
2
(0, 1, 0, 1) or 1√

3
(0, 1, 1, 1). By only considering such variables, we wish to model tasks where

modules are combined sparsely without varying the magnitudes with which modules enter the com-
position. There are a finite number of such vectors, and thus the task distribution is a uniform
mixture of diracs. We define the training task distribution by manually specifying which of these
vectors are in the distribution.

C.1.2 STUDENT MODEL

We use the same parameterization and parameter initialization scheme for the student as for the
teacher, but we vary the hidden layer width ĥ and inferred task latent variable dimension M̂ .

C.1.3 TRAINING AND EVALUATION

Algorithm 2 Bilevel training procedure

Require: outer-batch size Bouter, inner batch-size Binner, number of outer steps Nouter, number of
inner steps Ninner, outer learning rate ηouter, inner learning rate ηinner
for Nouter iterations do

Sample Bouter task latent (zk)k
∆θ ← 0
for k do

ϕ← ϕ0
for Ninner iterations do

Sample Binner data ((xi, yi))i from Dsupport(zk)
ϕ← ϕ− ηinner∇ϕL(θ, ϕ, ((xi, yi))i)

end for
Sample Binner data ((xi, yi))i from Dquery(zk)
∆θ ← ∆θ +∇θL(θ, ϕ, ((xi, yi))i)

end for
θ ← θ − ηouter∆θ

end for

Since there can be an infinite amount of distinct tasks for continuous task distributions, we adopt
a training procedure that allows for training in a multi-task setting with infinite tasks. For this
purpose, we take the standard algorithm to optimize the cross-validation bilevel problem, detailed
in Algorithm 2, and adapt it to the infinite-data multi-task case, using as the fast parameter ϕ the
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inferred task latent variable ẑ and the meta parameters θ the remainder of the student parameters,
Θ̂, â.

Concretely, to stay close to the theory, we use the whole task distribution for both support and query
set, in particular i.e. Dsupport(zk) = Dquery(zk). In this case, at equilibrium (over the distribution),
we know that the total derivative in θ does not involve any second-order gradients and can be com-
puted efficiently with partial derivatives. Therefore we ensure the inner loop converges by allowing
for a large number of inner stepsNinner, and apply the stop grad operation on ϕ before computing
the gradient w.r.t θ.

While typically the fast parameter initialization ϕ0 can also be learned, here for simplicity we ran-
domly sample the initial value from a normal distribution and keep it fixed throughout training.

In order to measure out-of-distribution performance at the end of training, we wish to sample new
task latent vectors z involving unseen combinations of modules, and evaluate the ability of the
student to fit the corresponding data. We follow the same inner loop procedure as during training,
and report the average outer loss over the task distribution, as well as the module alignment metric
described in Section 3.3.

C.1.4 EXPERIMENTS

We conduct 2 experiments, corresponding to Figure 2B and C.

In the first experiment (Figure 2B), we wish to investigate the effect of the connected support on
module identification. We manually select task distributions that have, or do not have the connected
support property, for both continuous and discrete task distributions. See Table A9 for the chosen
tasks.

In the second experiment (Figure 2C), we investigate the effect of overparameterization on identifia-
bility when the task distribution has connected and compositional support. For both continuous and
discrete distributions, we use the task corresponding to the first column of the appropriate section in
Table A9.

The training loss on all experiments reached a value lower than 10−7.

C.1.5 HYPERPARAMETERS

For all experiments in the multi-task teacher student, we set Bouter = 64, Binner = 256, Nouter =
60000, Ninner = 300. We optimize the inner loop using the Adam optimizer with ηinner = 0.003,
and the outer loop using the AdamW optimizer with various weight decay strengths and an initial
learning rate ηouter = 0.001 annealed using cosine annealing down to 10−6 at the end of training.
We observed that this set of hyperparameters gave enough time for the student to practically reach 0
loss, which is the setting studied in the theory.

C.2 HYPERTEACHER

C.2.1 DATA GENERATION

We generate data by first initializing the teacher parameters once. The teacher network is a linear
hypernetwork for which the parameterization and initialization scheme are described in Section D.
For all our experiments, unless specified otherwise, we fix the input dimension to n = 16, hidden
dimension of the teacher to h = 32, and output dimension to o = 8. We define the distribution over
inputs x to be the uniform distribution with 0 mean and standard deviation 1 on Rn.

Targets are generated by passing the input x through the generated network. To make sure the
distribution of the outputs is not too dissimilar across tasks, we normalize each output neurons to
have unit variance and zero mean by numerically estimating the first and second moment of the
distribution over random inputs. The tasks are sampled following the same procedure as in the
discrete task distribution description in Section C.1.1. That is, a finite set of binary vectors of size
M fully specifies the task distribution.
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Figure A11: Number of possible tasks in the hyperteacher as a function of the number of teacher
modules M , the number of sparse combinations K and number of hidden layers L is given by∑K

k

(
M
k

)L−1
growing exponentially in M .

C.2.2 TRAINING AND EVALUATION

We train the models following the bilevel cross-validation objective introduced in Section 2. Specif-
ically, we follow the algorithm outlined in 2. The loss function for both inner and outer loop is the
KL divergence between the log-softmax of the target y and the log-softmax of the prediction of the
network.

For each task, we sample i.i.d 256 input-output pairs for each of the support and query set. The
evaluation follows the same procedure and inner optimization, except for the fact that it involves
tasks that are combination of modules that have not been seen during training. We report the outer
KL divergence averaged over Bouter tasks, as well as the accuracy, which measures the average over
tasks of fraction of input for which the index of the largest value of the prediction matches that of
the largest value of the target.

C.2.3 EXPERIMENTS

Here we provide additional details for the experiments presented in Figure 3.

Compositional vs non-compositional support. We perform this experiment for different values
ofK. GivenK, we compute the set of binary masks with up toK non-0 entries, and randomly select
three-quarters of them and use the obtained list for generating training tasks. We make sure that the
obtained list has compositional support, that is, all modules appear at least once. The remaining
quarter is used as the OOD task for evaluation. For non-compositional support, we again enumerate
all binary masks with up to K non-0 entries, but split it into 2 sets such that for training, only masks
where the last module is inactive are used, while for the evaluation, masks which always have the
last module activated, are used to generate the tasks.

Connected vs disconnected support. For these experiments, we consider M = 8.

For connected task support, we used the task distribution defined by the set of masks {ei}1≤i≤M ∪
{ei + ei+1 mod M}1≤i≤M ∪ {ei + ei+2 mod M}1≤i≤M where (ei)1≤i≤M represent the canonical
basis of RM . For disconnected task support, we used the task distribution defined by the set of masks
{ei}1≤i≤M ∪ {ei + ej}i,j∈[1,...M/2],i̸=j ∪ {ei + ej}i,j∈[M/2+1,...M ],i̸=j . These tasks were chosen
such that the number of tasks for the connected and disconnected experiment are comparable. For
the OOD task distribution used for evaluation, we used all binary masks with K = 2 that have been
neither used by the connected nor disconnected task distribution.

Other experiments. For the other experiments, we generate tasks following the same split as for
the compositional experiment. For the overparameterization experiment, we further set the teacher
hidden layer width to h = 16.
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Table A10: Hyperparameter grid-search space for the hyperteacher. Best found parameters are
marked in bold.

Hyperparameter Nonlinear hypernet. Linear hypernet. ANIL MAML

lr outer {0.001, 0.003} {0.001, 0.003} {0.001, 0.003} {0.001, 0.003}
lr inner {0.1, 0.3} {0.1, 0.3} {0.01, 0.03} {0.01, 0.03}
grad clip {1, 2} {1, 2} {1, 2} {1, 2}
weight decay {0.01, 0.0001} {0.01, 0.0001} {0.01, 0.0001} {0.01, 0.0001}

C.2.4 HYPERPARAMETERS

For all hyperteacher experiments, we set Bouter = 128, Nouter = 200000 and use full-batch inner
optimization. For all models, we optimize both the inner and outer loop with the AdamW optimizer.
Unless specified otherwise, we set the following architectural hyperparameters, ensuring the total
number of parameters across models is comparable.

• Linear Hypernetwork: base network hidden layer L = 3, hidden units ĥ = 128. Number
of modules M̂ = 4M

• Nonlinear Hypernetwork: base network hidden layer L = 3, hidden units ĥ = 128. Num-
ber of modules M̂ = 4M

• MAML: network hidden layer L = 3, hidden units ĥ = 368

• ANIL: network hidden layer L = 3, hidden units ĥ = 512

We fix the inner loop steps Ninner to 10 for all models, except for ANIL where Ninner = 100.
For all models, we tune the hyperparameters independently for the inner learning rate, the outer
learning rate, outer weight decay as well as the outer gradient clipping on the range specified in
Table A10. The hyperparameters are tuned to optimize for the compositional generalization loss on
the compositional support experiment detailed above. The same set of hyperparameters were then
used for all other experiments.

C.3 COMPOSITIONAL PREFERENCES

C.3.1 DATA GENERATION

Environment. We consider a grid world of size 5 × 5 as seen in Figure 4A. There are 5 actions:
move up, right, down, left, and terminate. Black cells represent walls. The agent deterministically
moves from one cell to another following the direction if the grid is wall(or border)-free, and oth-
erwise remains in place. The episode terminates when the terminate action is taken. Finally, there
are 4 objects placed on wall-free cells of the grid. Each object has exactly one of the 8 colors. Each
object remains static throughout the episode, but disappears when the agent steps on it, potentially
producing a reward in a task-specific manner, which will be explained below. The state space is
then the grid, which shows the positions of the walls, the objects, their respective feature, and the
position of the agent, as in Figure 4A.

Task. A task is defined by a task latent variable z, of dimension M = 8. Such a variable defines
the reward function of the environment in the following way: first, a preference vector is computed
by linearly combining a set of M pre-computed preference template vectors of dimension 8, using
the task latent variable as the coefficient. The resulting preference vector specifies a mapping from
the 8 colors to a preference value. During the task, when the agent steps on an object, it gets a reward
equal to the preference value of that color.

For each task, several instances of the environment are then created. While the wall configuration
remains fixed, for every new instance of the environment, we sample the position of all objects
uniformly from all wall-free cells (making sure there is no overlap), as well as the initial position
of the agent. For each instance, we compute the optimal action-value function with discount factor
0.9 and time horizon 8. We then let an agent behave greedily following the obtained action value
function (forcing the agent to take the terminate action when no positively rewarding objects are left
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in the grid), and build the task dataset D(z) = ((xi, yi))i by collecting the observations x along the
trajectory, and the corresponding action value vector y, over all instances. Finally, tasks are sampled
following the same procedure as in the continuous task distribution description in Section C.1.1. A
finite set of binary masks, each of size M , thus fully specifies the task distribution.

C.3.2 TRAINING AND EVALUATION.

We train the models following the bilevel cross-validation objective introduced in Section 2. Specifi-
cally, we follow the algorithm 2. The loss function for both inner and outer loop is the Mean Squared
Error (MSE) loss between the action values y and the prediction of the network.

For each task, we instantiate 32 different instances, 16 of which being used for the support set and
the remaining 16 for the query set, and create the dataset following the procedure outlined in the
previous section. The evaluation follows the same procedure and inner optimization, except for the
fact that it involves tasks that are combinations of modules that have not been seen during training.
We report the outer MSE loss averaged over Bouter tasks.

C.3.3 EXPERIMENTS

We detail the experiments corresponding to Figure 4B and C.

Connected vs disconnected support. For connected task support, we used the task distribution
defined by the set of mask {ei}1≤i≤M ∪ {ei + ei+1 mod M}1≤i≤M ∪ {ei + ei+2 mod M}1≤i≤M

where (ei)1≤i≤M represent the canonical basis of RM . For disconnected task support, we used
the task distribution defined by the set of mask {ei}1≤i≤M ∪ {ei + ej}i,j∈[1,...M/2],i̸=j ∪ {ei +
ej}i,j∈[M/2+1,...M ],i̸=j . These tasks were chosen such that the number of tasks for the connected
and disconnected experiment are comparable. For the OOD task distribution used for evaluation, we
used all binary masks with K = 2 that have been neither used by the connected nor disconnected
task distribution.

Compositional vs non-compositional support. For compositional support, we compute the set
of binary masks with up to 3 non-0 entries, and randomly select three-quarter of them and use the
obtained list for generating training tasks. We make sure that the obtained list contain a composi-
tional support. The remaining quarter is used as the OOD task for evaluation. For non-compositional
support, we enumerate all binary masks with up to 3 non-0 entries, and split it into 2 sets following
the value of the last entry of the mask. For training, we use the set of mask where the last module
is inactive, while for the evaluation, we use the set of mask which always has the last module acti-
vated, to generate the tasks. Again, these settings were chosen such that the number of tasks for the
compositional and non-compositional experiment are comparable.

C.3.4 HYPERPARAMETERS

For all experiments, we set Bouter = 128, full-batch inner optimization, Nouter = 100000. For
all models, we optimize the inner loop with AdamW optimizer with the default weight decay of
0.00001, and the outer loop with AdamW optimizer with tuned weight decay. Unless specified oth-
erwise, we set the following architectural hyperparameters to ensure the total number of parameters
across models is comparable.

• Linear Hypernetwork: base network hidden layer L = 3, hidden units ĥ = 64. Number of
modules M̂ = 32

• Nonlinear Hypernetwork: base network hidden layer L = 2, hidden units ĥ = 64. Number
of modules M̂ = 32

• MAML: network hidden layer L = 3, hidden units ĥ = 368

• ANIL: network hidden layer L = 4, hidden units ĥ = 512

We fix the inner loop steps Ninner to 10 for all models, except for ANIL where Ninner = 100. For all
models, we tune the hyperparameters independently for the inner learning rate, the outer learning
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Table A11: Hyperparameter grid-search space for the compositional preference environment. Best
found parameters are marked in bold.

Hyperparameter Nonlinear hypernet. Linear hypernet. ANIL MAML

lr outer {0.0003, 0.001} {0.0003, 0.001} {0.0003, 0.001} {0.0003, 0.001}
lr inner {0.1, 0.3} {0.1, 0.3} {0.01, 0.03} {0.01, 0.03}
grad clip {1, 2} {1, 2} {1, 2} {1, 2}

rate as well as the outer gradient clipping from the range specified in table A11. The hyperparam-
eters are tuned to optimize for the compositional generalization loss on the compositional support
experiment detailed above. The same set of hyperparameters were then used for all other experi-
ments.

C.4 COMPOSITIONAL GOALS

C.4.1 DATA GENERATION

For the compositional goals environment we consider mazes of size 11×11 with the same movement
dynamics as described above in the compositional preference environment. In addition to moving
up, down, left and right, the agent can choose one of the ‘object interaction’ actions. Each environ-
ment has 5 randomly placed objects, one of which is the target object. The agent is placed randomly
and has to reach the target object followed by performing the target interaction to obtain a reward.
Each task is defined by a goal vector that specifies which of the 5 maze configurations is used, which
of the 5 object types is assigned as the target object, which of the 2 possible target interactions is the
correct one and finally in which of the 4 quadrants of the maze the target object will be located (c.f.
Figure 4D.)

Goals are compositional in the sense that any of these factors can be arbitrarily combined leaving a
total of 5 · 5 · 2 · 4 = 200 possible goals. Given a goal, we first sample a new random position of the
agent and all objects, compute the optimal behavior policy and use it to draw 1 sample demonstration
of the optimal policy for the support set. We then sample new random configuration of the objects
and the agent given the same goal for the query set.

In the setting of compositional support, we randomly hold-out 25% of the possible goals ensuring
that every goal factor appears at least in one of the goals of the remaining 75% of goals used for
training.

To produce a training distribution with non-compositional support, we consistently hold out one of
the goal quadrants from the set of goals and use all goals that contain the held-out goal quadrant for
the OOD set.

C.4.2 TRAINING AND EVALUATION

We train the models following the bilevel cross-validation objective introduced in Section 2. Specif-
ically, we follow the algorithm outlined in Algorithm 2. The loss function is the cross-entropy loss
between the optimal action and the prediction of the network.

For each task, we sample a goal, instantiate two environments consistent with the goal and draw
samples containing the optimal trajectory from the agent location to the goal for both. We use the
demonstration of one instantiation of the environment for the support set and the second one for the
query set.

For all experiments, we use full batch optimization in the inner loop, and fix the outer batch size to
128, i.e. Bouter = 128.

The evaluation follows the same procedure as the inner optimization, except for the fact that it
involves tasks based on goals that have not been seen during training. We report the outer loss
averaged over 1024 tasks.
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Table A12: Hyperparameter grid-search space for the compositional goal environment. Best found
parameters are marked in bold.

Hyperparameter Nonlinear hypernet. Linear hypernet. ANIL MAML

lr outer {0.001, 0.003} {0.001, 0.003} {0.001, 0.003} {0.001, 0.003}
lr inner {0.1, 0.3} {0.1, 0.3} {0.01, 0.03} {0.01, 0.03}
grad clip {1, 2} {1, 2} {1, 2} {1, 2}

C.4.3 HYPERPARAMETERS

For all experiments, we set Bouter = 128, Binner = 256, Nouter = 200000. We optimize both the
inner and outer loop with the AdamW optimizer. For the outer loop we use a weight decay of
0.001 for the inner loop we use a weight decay of 0.0001. Unless specified otherwise, we set the
following architectural hyperparameters, ensuring the total number of parameters across models is
approximately comparable.

• Linear Hypernetwork: base network hidden layer L = 2, hidden units ĥ = 32. Number of
modules M̂ = 8

• Nonlinear Hypernetwork: base network hidden layer L = 2, hidden units ĥ = 32. Number
of modules M̂ = 8

• MAML: network hidden layer L = 2, hidden units ĥ = 384.

• ANIL: network hidden layer L = 2, hidden units ĥ = 512.

We fix the inner loop steps Ninner to 10 for all models, except for ANIL where Ninner = 100. For all
models, we tune the hyperparameters independently for the inner learning rate, the outer learning
rate as well as the outer gradient clipping from the range specified in Table A12. The hyperparam-
eters are tuned to optimize for the compositional generalization loss on the compositional support
experiment detailed above, for all models. The same set of hyperparameters were then used for all
other experiments.

D META-LEARNING MODELS

In this section we provide details of the models we train in meta-learning experiments. We use the
same architectures across experiments and settings.

We keep the notation of θ and ϕ to respectively denote meta-parameters and fast-parameters, as used
in Section 2 and Algorithm 2.

D.1 MAML

D.1.1 PARAMETERIZATION

We consider a standard ReLU MLP with L hidden layers of width h, with bias. During meta
learning, all parameters of the network are adapted and are thus part of the fast parameter ϕ. The only
task-shared parameter θ is thus the value at which we initialize the fast parameters at the beginning
of each task, i.e. θ = ϕ0.

D.1.2 INITIALIZATION

We initialize ϕ0 such that parameters corresponding to weights are initialized following the truncated
normal distribution with mean 0 and standard deviation 1√

H
where H is the size of the input to the

layer. Parameters corresponding to biases are initialized at 0.
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D.2 ANIL

D.2.1 PARAMETERIZATION

We consider a standard ReLU MLP with L hidden layers of width h, with bias.

Here, during meta learning, only the readout layer of the network is part of the fast parameters ϕ.
The parameters for the rest of the network, as well as the value ϕ0 at which we initialize the fast
parameters at the beginning of each task are part of the task-shared parameters θ.

D.2.2 INITIALIZATION

We initialize θ and ϕ such that parameters corresponding to weights are initialized following the
truncated normal distribution with mean 0 and standard deviation 1√

H
where H is the size of the

input to the layer. Parameters corresponding to biases are initialized at 0.

D.3 LINEAR HYPERNETWORK

D.3.1 PARAMETERIZATION

We consider a base network consisting in a ReLU MLP, with L hidden layers of width h. Crucially,
we use the NTK parameterization of the MLP, where at each layer, the pre-activation units are
rescaled by 1√

H
where H is the dimension of the input to the layer. As such, if at initialization

the hypernetwork outputs weights that are centered and unit variance, the forward pass would be
approximately variance preserving.

The weights are generated by the linear hypernetwork in the following way:

• First, given an embedding z, the linear hypernetwork normalizes the embedding to the unit
norm.

• Then, the normalized embedding is linearly multiplied by the parameter of the hypernet-
work Θ, to generate the flattened weights

• Finally, the flattened weight are reshaped and plugged into the base network

The biases are not generated by the hypernetwork.

Crucially, we use 3 hypernetworks to generate respectively the first layer weight, all hidden layer
weights, and the last layer weight. There are therefore 3 embeddings in total, one for each hypernet-
work.

When training the model in the meta-learning setting, we use as fast parameters ϕ the set of embed-
ding vectors as well as the biases in the base network. The meta parameter θ are the hypernetwork
parameters, as well as the initialization value for the fast parameters.

D.3.2 INITIALIZATION

The hypernetwork weights are initialized following the truncated normal distribution with mean 0
and standard deviation 1√

M
where M is the embedding vector dimension.

The meta-parameters corresponding to the initialization values of the embeddings are initialized
following a uniform and unit variance distribution, and those corresponding to biases are initialized
to 0.

D.4 NONLINEAR HYPERNETWORK

D.4.1 PARAMETERIZATION

The parameterization of the nonlinear hypernetwork closely follows that of the linear counterpart
(see Section D.3.1. Instead of using a linear layer to produce the weights of the base network given
the fast parameters ϕ, the fast parameters are first nonlinearly transformed in a MLP.
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Specifically, the hypernetwork is a 4-layer MLP with the ELU activation function applied at every
hidden layer. Layer normalization is applied before each activation function, as well as to the input.

When training the model in the meta-learning setting, we use as fast parameters ϕ the set of embed-
ding vectors as well as the biases in the base network. The meta-parameters θ are the hypernetwork
parameters, as well as the initialization values for the fast parameters.

D.4.2 INITIALIZATION

The hypernetwork parameters are initialized such that all biases are set to 0 and MLP layer weights
are initialized following the truncated normal distribution with mean 0 and standard deviation 1√

H
where H is the size of the input to the layer.

The meta-parameter corresponding to the initialization value of the embeddings are initialized fol-
lowing a uniform and unit variance distribution, and those corresponding to biases are initialized to
0.

E EXTENDED RELATED WORK

We complement the related work discussed in the main text with a more comprehensive review in
the following.

The debate on the aptitude of neural networks for compositionality dates back to the first wave
of connectionist models (Rumelhart & McClelland, 1986; Fodor & Pylyshyn, 1988; Smolensky,
1991; Hadley, 1994; Phillips, 1995) fueled by the proposition that combinatorial structures are a
key property of human cognitive abilities. The widespread success of deep learning has lead many
efforts to evaluate the capacity of deep networks for compositional generalization.

A number of benchmarks have been designed to specifically investigate the ability for compositional
generalization primarily in the context of language (Bastings et al., 2018; Lake & Baroni, 2018; Kim
& Linzen, 2020; Ruis et al., 2020; Hupkes et al., 2020; Keysers et al., 2020; Dankers et al., 2022), vi-
sual question answering (Johnson et al., 2017; Bahdanau et al., 2020), visual scenes (Xu et al., 2022)
and reinforcement learning (Barreto et al., 2020; Zhao et al., 2022). Commonly, these benchmarks
demonstrate shortcomings of current deep networks at achieving compositional generalization from
recurrent neural networks (Lake & Baroni, 2018; Loula et al., 2018), to convolutional networks
(Dessı̀ & Baroni, 2019) and transformers (Keysers et al., 2020).

A large number of architectures have been designed with compositionality in mind. A common
theme among them is to attempt to decompose skills or reusable atoms of knowledge, across tasks in
order to recombine them in novel ways for new tasks (Alet et al., 2018; Ponti et al., 2022; Kingetsu
et al., 2021). Compositional plan vectors (Devin et al., 2020) learn composable embeddings to
encode different tasks and condition a policy. Similarly, Frady et al. (2023) use composable vec-
tor symbols to represent compositional visual scenes given latent supervision. To impart a strong
bias for compositionality, some works aim to directly learn symbolic expressions (Liu et al., 2020;
Vankov & Bowers, 2020). Similar to our setup, meta seq2seq (Lake, 2019) conditions a sequence
model on demonstrations to facilitate compositional generalization. Building modular systems that
exhibit compositional generalization is also a main goal of graph neural networks (Battaglia et al.,
2018). In this context compositional structure is typically built into the system while here we attempt
to discover this structure from unstructured observations. Complementary to this, Ghazi et al. (2019)
have proposed a framework to make the function implemented by individual modules interpretable.

With the advent of pretrained large language models, compositional abilities have seemingly come
into reach (Zhou et al., 2023; Orhan, 2022; Furrer et al., 2021; Csordás et al., 2021). Many spe-
cialized architectures that show compositional behavior on one of the aforementioned benchmarks
(Russin et al., 2019; Li et al., 2019; Gordon et al., 2020; Andreas, 2020; Liu et al., 2020; Lake, 2019;
Nye et al., 2020; Kaiser & Sutskever, 2016) are outperformed by pretrained large language models
(Furrer et al., 2021). However, it remains an open question whether the ability for compositional
generalization extends beyond the training distribution (Srivastava et al., 2023; Press et al., 2023;
Dziri et al., 2023).
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F ADDITIONAL DETAILS

F.1 COMPUTE RESOURCES

We used Linux workstations with Nvidia RTX 2080 and Nvidia RTX 3090 GPUs for development
and conducted hyperparameter searches and experiments using 5 TPUv2-8, 5 TPUv3-8 and 1 Linux
server with 8 Nvidia RTX 3090 GPUs over the course of 9 months. In total, we spent an estimated
amount of 6 GPU months.

F.2 SOFTWARE AND LIBRARIES

For the results produced in this paper we relied on free and open-source software. We implemented
our experiments in Python using JAX (Bradbury et al., 2018, Apache License 2.0) and the Deepmind
Jax Ecosystem (Babuschkin et al., 2020, Apache License 2.0). For experiment tracking we used
wandb (Biewald, 2020, MIT license) and for the generation of plots we used plotly (Inc, 2015, MIT
license).
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